Increasing temperature seasonality may overwhelm shifts in soil moisture to favor shrub over grass dominance in Colorado Plateau drylands

Abstract

Ecosystems in the southwestern U.S. are predicted to experience continued warming and drying trends of the early twenty-first century. Climate change can shift the balance between grass and woody plant abundance in these water-limited systems, which has large implications for biodiversity and ecosystem processes. However, variability in topo-edaphic conditions, notably soil texture and depth, confound efforts to quantify specific climatic controls over grass vs. shrub dominance. Here, we utilized weather records and a mechanistic soil water model to identify the timing and depth at which soil moisture related most strongly to the balance between grass and shrub dominance in the southern Colorado Plateau. Shrubs dominate where there is high soil moisture availability during winter, and where temperature is more seasonally variable, while grasses are favored where moisture is available during summer. Climate change projections indicate consistent increases in mean temperature and seasonal temperature variability for all sites, but predictions for summer and winter soil moisture vary across sites. Together, these changes in temperature and soil moisture are expected to shift the balance towards increasing shrub dominance across the region. These patterns are strongly driven by changes in temperature, which either enhance or overwhelm effects of changes in soil moisture across sites. This approach, which incorporates local, edaphic factors at sites protected from disturbance, improves understanding of climate change impacts on grass vs. shrub abundance and may be useful in other dryland regions with high edaphic and climatic heterogeneity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Ann Bot 86:1–20

    CAS  Article  Google Scholar 

  2. Andrews C, Bradford J, Norris J, Gremer JR, Duniway M, Munson S, Thomas L, Swan M (2018) Describing past and future soil moisture in the loamy upland shrubland community in Wupatki National Monument. Project Brief. National Park Service. Fort Collins, Colorado. https://www.nps.gov/articles/modeling-past-and-future-soil-moisture-in-parks.htm

  3. Archer S, Scifres C, Bassham CR, Maggio R (1988) Autogenic succession in a subtropical Savanna: conversion of grassland to thorn woodland. Ecol Monogr 58:111–127. https://doi.org/10.2307/1942463

    Article  Google Scholar 

  4. Archer S, Schimel DS, Holland EA (1995) Mechanisms of shrubland expansion: land use, climate or CO2? Clim Change 29:91–99. https://doi.org/10.1007/bf01091640

    Article  Google Scholar 

  5. Arriaga-Ramírez S, Cavazos T (2010) Regional trends of daily precipitation indices in northwest Mexico and southwest United States. J Geophys Res Atmos. https://doi.org/10.1029/2009jd013248

    Article  Google Scholar 

  6. Báez S, Collins SL (2008) Shrub invasion decreases diversity and alters community stability in northern Chihuahuan desert plant communities. PLoS One 3:e2332. https://doi.org/10.1371/journal.pone.0002332

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barron-Gafford GA, Scott RL, Jenerette GD, Hamerlynck EP, Huxman TE (2013) Landscape and environmental controls over leaf and ecosystem carbon dioxide fluxes under woody plant expansion. J Ecol 101:1471–1483. https://doi.org/10.1111/1365-2745.12161

    CAS  Article  Google Scholar 

  8. Barron-Gafford GA et al (2017) Impacts of hydraulic redistribution on grass–tree competition vs facilitation in a semi-arid savanna. New Phytol 215:1451–1461. https://doi.org/10.1111/nph.14693

    CAS  Article  PubMed  Google Scholar 

  9. Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998. https://doi.org/10.1104/pp.008250

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 31:491–543

    Article  Google Scholar 

  11. Bradford JB, Lauenroth WK, Burke IC, Paruelo JM (2006) The influence of climate, soils, weather, and land use on primary production and biomass seasonality in the US Great Plains. Ecosystems 9:934–950. https://doi.org/10.1007/s10021-004-0164-1

    Article  Google Scholar 

  12. Bradford JB, Schlaepfer DR, Lauenroth WK, Burke IC (2014) Shifts in plant functional types have time-dependent and regionally variable impacts on dryland ecosystem water balance. J Ecol 102:1408–1418. https://doi.org/10.1111/1365-2745.12289

    Article  Google Scholar 

  13. Breshears DD (2006) The grassland–forest continuum: trends in ecosystem properties for woody plant mosaics? Front Ecol Environ 4:96–104. https://doi.org/10.1890/1540-9295(2006)004%5b0096:TGCTIE%5d2.0.CO;2

    Article  Google Scholar 

  14. Breshears DD et al (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148. https://doi.org/10.1073/pnas.0505734102

    CAS  Article  PubMed  Google Scholar 

  15. Browning DM, Duniway MC, Laliberte AS, Rango A (2012) Hierarchical analysis of vegetation dynamics over 71 years: soil-rainfall interactions in a Chihuahuan Desert ecosystem. Ecol Appl 22:909–926

    Article  Google Scholar 

  16. Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE (2008) Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–979. https://doi.org/10.1007/s10021-008-9172-x

    Article  Google Scholar 

  17. Caudle DH, Sanchez H, DiBenedetto J, Talbot CJ, Karl MS (2013) Interagency ecological site handbook for rangelands. U.S. Department of the Interior, Bureau of Land Management

  18. Cayan DR, Das T, Pierce DW, Barnett TP, Tyree M, Gershunov A (2010) Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc Natl Acad Sci USA 107:21271–21276. https://doi.org/10.1073/pnas.0912391107

    Article  PubMed  Google Scholar 

  19. Comstock JP, Ehleringer JR (1992) Plant adaptation in the Great-Basin and Colorado Plateau. Gt Basin Nat 52:195–215

    Google Scholar 

  20. Cook BI, Ault TR, Smerdon JE (2015) Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci Adv. https://doi.org/10.1126/sciadv.1400082

    Article  PubMed  PubMed Central  Google Scholar 

  21. Copeland SM, Bradford JB, Duniway MC, Schuster RM (2017) Potential impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere 8:e01823. https://doi.org/10.1002/ecs2.1823

    Article  Google Scholar 

  22. Craine JM, Nippert JB, Elmore AJ, Skibbe AM, Hutchinson SL, Brunsell NA (2012) Timing of climate variability and grassland productivity. Proc Natl Acad Sci 109:3401–3405. https://doi.org/10.1073/pnas.1118438109

    Article  PubMed  Google Scholar 

  23. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. https://doi.org/10.1038/nclimate1633

    Article  Google Scholar 

  24. DeCoster JK et al (2012) Integrated upland monitoring protocol for the Southern Colorado Plateau Network. Natural Resource Technical Report NPS/SCPN/NRR–2012/577. National Park Service, Fort Collins

  25. Dickerson-Lange SE, Mitchell R (2014) Modeling the effects of climate change projections on streamflow in the Nooksack River basin, Northwest Washington. Hydrol Process 28:5236–5250

    Article  Google Scholar 

  26. Diffenbaugh NS, Giorgi F, Pal JS (2008) Climate change hotspots in the United States. Geophys Res, Lett, p 35

    Google Scholar 

  27. D’Odorico P, Caylor K, Okin GS, Scanlon TM (2007) On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J Geophys Res Biogeosci. https://doi.org/10.1029/2006jg000379

    Article  Google Scholar 

  28. D’Odorico P et al (2010) Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere 1:1–11. https://doi.org/10.1890/ES10-00073.1

    Article  Google Scholar 

  29. D’Odorico P, Okin GS, Bestelmeyer BT (2012) A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5:520–530. https://doi.org/10.1002/eco.259

    Article  Google Scholar 

  30. Duniway MC, Bestelmeyer BT, Tugel A (2010a) Soil processes and properties that distinguish ecological sites and states. Rangelands 32:9–15. https://doi.org/10.2111/Rangelands-D-10-00090.1

    Article  Google Scholar 

  31. Duniway MC, Snyder KA, Herrick JE (2010b) Spatial and temporal patterns of water availability in a grass-shrub ecotone and implications for grassland recovery in arid environments. Ecohydrology 3:55–67. https://doi.org/10.1002/eco.94

    Article  Google Scholar 

  32. Duniway MC, Petrie MD, Peters DPC, Anderson JP, Crossland K, Herrick JE (2018) Soil water dynamics at 15 locations distributed across a desert landscape: insights from a 27-yr dataset. Ecosphere 9:e02335

    Article  Google Scholar 

  33. Elmendorf SC et al (2015) Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proc Natl Acad Sci 112:448–452. https://doi.org/10.1073/pnas.1410088112

    CAS  Article  PubMed  Google Scholar 

  34. Epstein HE, Gill RA, Paruelo JM, Lauenroth WK, Jia GJ, Burke IC (2002) The relative abundance of three plant functional types in temperate grasslands and shrublands of North and South America: effects of projected climate change. J Biogeogr 29:875–888. https://doi.org/10.1046/j.1365-2699.2002.00701.x

    Article  Google Scholar 

  35. Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13:10081–10094. https://doi.org/10.5194/acp-13-10081-2013

    CAS  Article  Google Scholar 

  36. Field JP et al (2010) The ecology of dust. Front Ecol Environ 8:423–430. https://doi.org/10.1890/090050

    Article  Google Scholar 

  37. Fleischner TL (1994) Ecological costs of livestock grazing in Western North America. Conserv Biol 8:629–644. https://doi.org/10.1046/j.1523-1739.1994.08030629.x

    Article  Google Scholar 

  38. Garfin G (2013) Assessment of climate change in the Southwest United States: a report prepared for the national climate assessment. Island Press, Washington, D.C.

    Google Scholar 

  39. Gremer JR, Bradford JB, Munson SM, Duniway MC (2015) Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States. Glob Change Biol 21:4049–4062. https://doi.org/10.1111/gcb.13043

    Article  Google Scholar 

  40. Hamerlynck EP, Scott RL, Moran MS, Schwander AM, Connor E, Huxman TE (2011) Inter- and under-canopy soil water, leaf-level and whole-plant gas exchange dynamics of a semi-arid perennial c-4 grass. Oecologia 165:17–29. https://doi.org/10.1007/s00442-010-1757-3

    Article  PubMed  Google Scholar 

  41. Hamlet AF, Salathé EP, Carrasco P (2010) Statistical downscaling techniques for global climate model simulations of temperature and precipitation with application to water resources planning studies. In: Chapter 4. Final Report for the Columbia Basin Climate Change Scenarios Project. Climate Impacts Group, Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle

  42. Huang J, Yu H, Guan X, Wang G, Guo R (2015) Accelerated dryland expansion under climate change. Nat Clim Change 6:166. https://doi.org/10.1038/nclimate2837

    Article  Google Scholar 

  43. Huenneke LF, Anderson JP, Remmenga M, Schlesinger WH (2002) Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Glob Change Biol 8:247–264. https://doi.org/10.1046/j.1365-2486.2002.00473.x

    Article  Google Scholar 

  44. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Cambridge University Press, Cambridge, p 688

  45. Jackson RB, Banner JL, Jobbagy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626. http://www.nature.com/nature/journal/v418/n6898/suppinfo/nature00910_S1.html

    CAS  Article  Google Scholar 

  46. Knapp AK et al (2008) Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Glob Change Biol 14:615–623. https://doi.org/10.1111/j.1365-2486.2007.01512.x

    Article  Google Scholar 

  47. Knoop WT, Walker BH (1985) Interactions of woody and herbaceous vegetation in a southern african savanna. J Ecol 73:235–253. https://doi.org/10.2307/2259780

    Article  Google Scholar 

  48. Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40:1194–1199. https://doi.org/10.1002/grl.50256

    Article  Google Scholar 

  49. Kulmatiski A, Beard KH (2013) Woody plant encroachment facilitated by increased precipitation intensity. Nat Clim Change 3:833. https://doi.org/10.1038/nclimate1904

    CAS  Article  Google Scholar 

  50. Ladwig LM et al (2016) Beyond arctic and alpine: the influence of winter climate on temperate ecosystems. Ecology 97:372–382. https://doi.org/10.1890/15-0153.1

    Article  PubMed  Google Scholar 

  51. Lauenroth WK, Bradford JB (2006) Ecohydrology and the partitioning AET between transpiration and evaporation in a semiarid steppe. Ecosystems 9:756–767. https://doi.org/10.1007/s10021-006-0063-8

    Article  Google Scholar 

  52. Livneh B et al (2013) A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: update and extensions. J Clim 26:9384–9392. https://doi.org/10.1175/jcli-d-12-00508.1

    Article  Google Scholar 

  53. Maestre FT et al (2009) Shrub encroachment can reverse desertification in semi-arid mediterranean grasslands. Ecol Lett 12:930–941. https://doi.org/10.1111/j.1461-0248.2009.01352.x

    Article  PubMed  Google Scholar 

  54. Maurer EP, Brekke L, Pruitt T, Duffy PB (2007) Fine-resolution climate projections enhance regional climate change impact studies. Eos Trans AGU 88:504. https://doi.org/10.1029/2007EO470006

    Article  Google Scholar 

  55. McAfee SA, Russell JL (2008) Northern annular mode impact on spring climate in the western United States. Geophys Res Lett. https://doi.org/10.1029/2008gl034828

    Article  Google Scholar 

  56. McCluney KE et al (2012) Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol Rev 87:563–582. https://doi.org/10.1111/j.1469-185X.2011.00209.x

    Article  PubMed  Google Scholar 

  57. Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. http://www.nature.com/nature/journal/v463/n7282/suppinfo/nature08823_S1.html

    CAS  Article  Google Scholar 

  58. Munson SM, Belnap J, Okin GS (2011a) Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proc Natl Acad Sci USA 108:3854–3859. https://doi.org/10.1073/pnas.1014947108

    Article  PubMed  Google Scholar 

  59. Munson SM, Belnap J, Schelz CD, Moran M, Carolin TW (2011b) On the brink of change: plant responses to climate on the Colorado Plateau. Ecosphere. https://doi.org/10.1890/es11-00059.1

    Article  Google Scholar 

  60. Munson SM et al (2015) Long-term plant responses to climate are moderated by biophysical attributes in a North American desert. J Ecol 103:657–668. https://doi.org/10.1111/1365-2745.12381

    Article  Google Scholar 

  61. Munson SM, Sankey TT, Xian G, Villarreal ML, Homer CG (2016) Decadal shifts in grass and woody plant cover are driven by prolonged drying and modified by topo-edaphic properties. Ecol Appl 26:2480–2494. https://doi.org/10.1002/eap.1389

    Article  Google Scholar 

  62. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:23–51

    Article  Google Scholar 

  63. Paruelo JM, Lauenroth WK (1996) Relative abundance of plant functional types in grasslands and shrublands of North America. Ecol Appl 6:1212–1224. https://doi.org/10.2307/2269602

    Article  Google Scholar 

  64. Pascale S et al (2017) Weakening of the North American monsoon with global warming. Nat Clim Change 7:806. https://doi.org/10.1038/nclimate3412

    Article  Google Scholar 

  65. Peters DPC, Herrick JE, Monger HC, Huang HT (2010) Soil-vegetation-climate interactions in arid landscapes: effects of the North American monsoon on grass recruitment. J Arid Environ 74:618–623. https://doi.org/10.1016/j.jaridenv.2009.09.015

    Article  Google Scholar 

  66. Petrie MD, Collins SL, Swann AM, Ford PL, Litvak ME (2015) Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert. Glob Change Biol 21:1226–1235. https://doi.org/10.1111/gcb.12743

    CAS  Article  Google Scholar 

  67. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2017) nlme: linear and nonlinear mixed effects models. R package version 3.1-131. https://CRAN.R-project.org/package=nlme

  68. Pugnaire FI, Armas C, Maestre FT (2011) Positive plant interactions in the Iberian Southeast: mechanisms, environmental gradients, and ecosystem function. J Arid Environ 75:1310–1320. https://doi.org/10.1016/j.jaridenv.2011.01.016

    Article  Google Scholar 

  69. Ratajczak Z, Nippert JB, Collins SL (2012) Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93:697–703. https://doi.org/10.1890/11-1199.1

    Article  PubMed  Google Scholar 

  70. Ratajczak Z, D’Odorico P, Nippert JB, Collins SL, Brunsell NA, Ravi S (2016) Changes in spatial variance during a grassland to shrubland state transition. J Ecol. https://doi.org/10.1111/1365-2745.12696

    Article  Google Scholar 

  71. Rupp DE, Abatzoglou JT, Hegewisch KC, Mote PW (2013) Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J Geophys Res Atmos. https://doi.org/10.1002/jgrd.50843

    Article  Google Scholar 

  72. Ruppert JC et al (2015) Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime. Glob Change Biol 21:1258–1270. https://doi.org/10.1111/gcb.12777

    Article  Google Scholar 

  73. Ryel RJ, Ivans CY, Peek MS, Leffler AJ (2008) Functional differences in soil water pools: a new perspective on plant water use in water-limited ecosystems. In: Lüttge U, Beyschlag W, Murata J (eds) Progress in botany. Springer, Berlin, pp 397–422

    Google Scholar 

  74. Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988) Primary production of the central grassland region of the United States. Ecology 69:40–45. https://doi.org/10.2307/1943158

    Article  Google Scholar 

  75. Sala OE, Golluscio RA, Lauenroth WK, Soriano A (1989) Resource partitioning between shrubs and grasses in the Patagonian Steppe. Oecologia 81:501–505. https://doi.org/10.1007/bf00378959

    CAS  Article  PubMed  Google Scholar 

  76. Sala OE, Lauenroth WK, Golluscio RA (1997) Plant functional types in temperate semi-arid regions. In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types. Cambridge University Press, Cambridge, pp 217–233

    Google Scholar 

  77. Schlaepfer DR, Lauenroth WK, Bradford JB (2012) Effects of ecohydrological variables on current and future ranges, local suitability patterns, and model accuracy in big sagebrush. Ecography 35:374–384. https://doi.org/10.1111/j.1600-0587.2011.06928.x

    Article  Google Scholar 

  78. Schlaepfer DR et al (2017) Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat Commun 8:14196. https://doi.org/10.1038/ncomms14196

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrel WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048

    CAS  Article  Google Scholar 

  80. Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–544. https://doi.org/10.1146/annurev.ecolsys.28.1.517

    Article  Google Scholar 

  81. Seager R, Vecchi GA (2010) Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc Natl Acad Sci 107:21277–21282. https://doi.org/10.1073/pnas.0910856107

    Article  PubMed  Google Scholar 

  82. Seager R et al (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    CAS  Article  Google Scholar 

  83. Soil Survey Staff NRCS, United States Department of Agriculture (2016) Web Soil Survey. https://websoilsurvey.nrcs.usda.gov/

  84. Sperry JS, Hacke UG (2002) Desert shrub water relations with respect to soil characteristics and plant functional type. Funct Ecol 16:367–378. https://doi.org/10.1046/j.1365-2435.2002.00628.x

    Article  Google Scholar 

  85. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498. https://doi.org/10.1175/bams-d-11-00094.1

    Article  Google Scholar 

  86. Tietjen B et al (2017) Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Glob Change Biol 23:2743–2754. https://doi.org/10.1111/gcb.13598

    Article  Google Scholar 

  87. Tohver IM, Hamlet AF, Lee S-Y (2014) Impacts of 21st-century climate change on hydrologic extremes in the pacific northwest region of North America. J Am Water Resour Assoc 50:1461–1476. https://doi.org/10.1111/jawr.12199

    Article  Google Scholar 

  88. Van Auken OW (2000) Shrub invasions of North American semiarid grasslands. Annu Rev Ecol Syst 31:197–215. https://doi.org/10.1146/annurev.ecolsys.31.1.197

    Article  Google Scholar 

  89. Walter H (1971) Ecology of tropical and subtropical vegetation. Oliver and Boyd, Edinburgh

    Google Scholar 

  90. Walter H (1973) Vegetation of the earth in relation to climate and the eco-physiological conditions. Translated from the second German edition by J. Wieser. Springer, New York

    Google Scholar 

  91. Weiss JL, Castro CL, Overpeck JT (2009) Distinguishing pronounced droughts in the southwestern United States: seasonality and effects of warmer temperatures. J Clim 22:5918–5932. https://doi.org/10.1175/2009jcli2905.1

    Article  Google Scholar 

  92. Whittaker RH, Niering WA (1975) Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology 56:771–790. https://doi.org/10.2307/1936291

    Article  Google Scholar 

  93. Williams AP et al (2012) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3:292. https://doi.org/10.1038/nclimate1693

    Article  Google Scholar 

  94. Wolkovich EM, Cook BI, McLauchlan KK, Davies TJ (2014) Temporal ecology in the Anthropocene. Ecol Lett 17:1365–1379. https://doi.org/10.1111/ele.12353

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the USGS National Park Monitoring Program and made possible by the National Park Service Inventory and Monitoring Division and the Southern Colorado Plateau Network (SCPN). We would like to thank Megan Swan and Jim DeCoster who manage the upland vegetation monitoring project for SCPN, and data managers Lee McCoy and Cindy Parker for their assistance with compiling vegetation, climate, and soils data as well as providing general consultation about details of the ecosystems in the study. Thanks also to James Allen and the Northern Arizona University field crews who collaborated with NPS to collect field data. Finally, we would like to thank four anonymous reviewers for valuable comments. Any use of trade, product, or firm names in this paper is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Affiliations

Authors

Contributions

JBB, JRG, LPT, JRN, SMM, and MCD developed research ideas and approach, JRG, JBB, and CA developed and conducted analyses. JRG wrote the manuscript with assistance and editing from all co-authors.

Corresponding author

Correspondence to Jennifer R. Gremer.

Additional information

Communicated by Heather Throop.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gremer, J.R., Andrews, C., Norris, J.R. et al. Increasing temperature seasonality may overwhelm shifts in soil moisture to favor shrub over grass dominance in Colorado Plateau drylands. Oecologia 188, 1195–1207 (2018). https://doi.org/10.1007/s00442-018-4282-4

Download citation

Keywords

  • Drylands
  • Soil water modeling
  • Climate change
  • Ecohydrology
  • Water balance
  • Woody plant encroachment