Nitrogen enrichment in host plants increases the mortality of common Lepidoptera species

Abstract

The recent decline of Lepidoptera species strongly correlates with the increasing intensification of agriculture in Western and Central Europe. However, the effects of changed host-plant quality through agricultural fertilization on this insect group remain largely unexplored. For this reason, we tested the response of six common butterfly and moth species to host-plant fertilization using fertilizer quantities usually applied in agriculture. The larvae of the study species Coenonympha pamphilus, Lycaena phlaeas, Lycaena tityrus, Pararge aegeria, Rivula sericealis and Timandra comae were distributed according to a split-brood design to three host-plant treatments comprising one control treatment without fertilization and two fertilization treatments with an input of 150 and 300 kg N ha−1 year−1, respectively. In L. tityrus, we used two additional fertilization treatments with an input of 30 and 90 kg N ha−1 year−1, respectively. Fertilization increased the nitrogen concentration of both host-plant species, Rumex acetosella and Poa pratensis, and decreased the survival of larvae in all six Lepidoptera species by at least one-third, without clear differences between sorrel- and grass-feeding species. The declining survival rate in all species contradicts the well-accepted nitrogen-limitation hypothesis, which predicts a positive response in species performance to dietary nitrogen content. In contrast, this study presents the first evidence that current fertilization quantities in agriculture exceed the physiological tolerance of common Lepidoptera species. Our results suggest that (1) the negative effect of plant fertilization on Lepidoptera has previously been underestimated and (2) that it contributes to the range-wide decline of Lepidoptera.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844. https://doi.org/10.1146/annurev.ento.47.091201.145300

    CAS  Article  PubMed  Google Scholar 

  2. Barton K (2016) MuMIn: multi-model inference. R package version 1.15.6. http://CRAN.R-project.org/package=MuMIn. Accessed 29 July 2017

  3. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  4. Bink FA, Siepel H (1996) Nitrogen and phosphorus in Molinia caerulea (Gramineae) and its impact on the larval development in the butterfly-species Lasiommata megera (Lepidoptera: Satyridae). Entomol Gen. 20:271–280. https://doi.org/10.1127/entom.gen/20/1996/271

    Article  Google Scholar 

  5. Boersma M, Elser JJ (2006) Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87:1325–1330. https://doi.org/10.1890/0012-9658(2006)87[1325:tmoagt]2.0.co;2

    Article  PubMed  Google Scholar 

  6. Bolker BM, Brooks ME, Clark CJ, Gaenge SW, Poulsen JR, Stevens MHH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. https://doi.org/10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  7. Bräu M, Bolz R, Kolbeck H, Nummer A, Voith J, Wolf W (2013) Tagfalter in Bayern. Eugen Ulmer, Stuttgart

    Google Scholar 

  8. Brewer JW, Capinera JL, Deshon RE, Walmsley ML (1985) Influence of foliar nitrogen levels on survival, development, and reproduction of western spruce budworm, Choristoneura occidentals (Lepidoptera: Tortricidae). Can Entomol 117:23–32. https://doi.org/10.4039/ent11723-1

    Article  Google Scholar 

  9. Bruppacher L, Pellet J, Arlettaz R, Humbert J (2016) Simple modifications of mowing regime promote butterflies in extensively managed meadows: evidence from field-scale experiments. Biol Conserv 196:196–202. https://doi.org/10.1016/j.biocon.2016.02.018

    Article  Google Scholar 

  10. Chen Y, Lin L, Wang C, Yeh C, Hwang S (2004) Response of two Pieris (Lepidoptera: Pieridae) species to fertilization of a host plant. Zool Stud 43:778–786

    Google Scholar 

  11. Chen Y, Ruberson JR, Olson DM (2008) Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol Exp Appl 126:244–255. https://doi.org/10.1111/j.1570-7458.2007.00662.x

    CAS  Article  Google Scholar 

  12. Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol Conserv 132:279–291. https://doi.org/10.1016/j.biocon.2006.04.020

    Article  Google Scholar 

  13. Dennis RLH, Shreeve TG, van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966. https://doi.org/10.1007/s10531-005-4314-3

    Article  Google Scholar 

  14. Dover JW, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13:3–27. https://doi.org/10.1007/s10841-008-9135-8

    Article  Google Scholar 

  15. Ebert G (ed) (1997) Die Schmetterlinge Baden-Württembergs. Band 5: Nachtfalter III. Eugen Ulmer, Stuttgart

  16. Ebert G (ed) (2001) Die Schmetterlinge Baden-Württembergs. Band 8: Nachtfalter VI. Eugen Ulmer, Stuttgart

  17. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 1: Tagfalter I. Eugen Ulmer, Stuttgart

  18. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Eugen Ulmer, Stuttgart

    Google Scholar 

  19. Fischer K, Fiedler K (2000) Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia 124:235–241. https://doi.org/10.1007/s004420000365

    CAS  Article  PubMed  Google Scholar 

  20. García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Shreeve TG, Konvička M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42

    Google Scholar 

  21. Goverde M, Erhardt A (2003) Effects of elevated CO2 on development and larval food-plant preference in the butterfly Coenonympha pamphilus (Lepidoptera, Satyridae). Glob Change Biol 9:74–83. https://doi.org/10.1046/j.1365-2486.2003.00520.x

    Article  Google Scholar 

  22. Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology, 2nd edn. Castlepoint Press, Dalbeattie

    Google Scholar 

  23. Han P, Lavoir A, Le Bot J, Amiens-Desneux E, Desneux N (2014) Nitrogen and water availability to tomato plants triggers bottom-up effects on the leafminer Tuta absoluta. Sci. Rep. 4:4455. https://doi.org/10.1038/srep04455

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2:e616. https://doi.org/10.7717/peerj.616

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hatcher PE, Paul ND, Ayres PG, Whittaker JB (1997) The effect of nitrogen fertilization and rust fungus infection, singly and combined, on the leaf chemical composition of Rumex obtusifolius. Funct Ecol 11:545–553. https://doi.org/10.1046/j.1365-2435.1997.00123.x

    Article  Google Scholar 

  26. Herzog F, Steiner B, Bailey D, Baudry J, Billeter R, Bukacek R, De Blust G, De Cock R, Dirksen J, Dormann CF, De Filippi R, Frossard E, Liira J, Schmidt T, Stöckli R, Thenail C, van Wingerden W, Bugter R (2006) Assessing the intensity of temperate European agriculture at the landscape scale. Eur J Agron 24:165–181. https://doi.org/10.1016/j.eja.2005.07.006

    Article  Google Scholar 

  27. Joern A, Behmer ST (1997) Importance of dietary nitrogen and carbohydrates to survival, growth, and reproduction in adults of the grasshopper Ageneotettix deorum (Orthoptera: Acrididae). Oecologia 112:201–208. https://doi.org/10.1007/s004420050301

    Article  PubMed  Google Scholar 

  28. Karmoker JL, Clarkson DT, Saker LR, Rooney JM, Purves JV (1991) Sulphate deprivation depresses the transport of nitrogen to the xylem and the hydraulic conductivity of barley (Hordeum vulgare L.) roots. Planta 185:269–278. https://doi.org/10.1007/bf00194070

    CAS  Article  PubMed  Google Scholar 

  29. Kleijn D, Kohler F, Báldi A, Batáry P, Concepción ED, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJP, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc B 276:903–909. https://doi.org/10.1098/rspb.2008.1509

    CAS  Article  PubMed  Google Scholar 

  30. Klop E, Omon B, WallisDeVries MF (2015) Impact of nitrogen deposition on larval habitats: the case of the Wall Brown butterfly Lasiommata megera. J Insect Conserv 19:393–402. https://doi.org/10.1007/s10841-014-9748-z

    Article  Google Scholar 

  31. Kurze S, Heinken T, Fartmann T (2017) Nitrogen enrichment of host plants has mostly beneficial effects on the life history traits of nettle-feeding butterflies. Acta Oecol 85:157–164. https://doi.org/10.1016/j.actao.2017.11.005

    Article  Google Scholar 

  32. Lenth RV (2016) Least-squares means: the r package lsmeans. J Stat Softw 69:1–33

    Article  Google Scholar 

  33. Liu Y, Pan X, Li J (2015) A 1961–2010 record of fertilizer use, pesticide application and cereal yields: a review. Agron Sustain Dev 35:83–93. https://doi.org/10.1007/s13593-014-0259-9

    CAS  Article  Google Scholar 

  34. Loader C, Damman H (1991) Nitrogen content of food plants and vulnerability of Pieris rapae to natural enemies. Ecology 72:1586–1590. https://doi.org/10.2307/1940958

    Article  Google Scholar 

  35. Löffler F, Stuhldreher G, Fartmann T (2013) How much care does a shrub-feeding hairstreak butterfly, Satyrium spini (Lepidoptera: Lycaenidae), need in calcareous grasslands? Eur J Entomol 110:145–152. https://doi.org/10.14411/eje.2013.020

    Article  Google Scholar 

  36. Maes D, van Dyck H (2001) Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol Conserv 99:263–276. https://doi.org/10.1016/s0006-3207(00)00182-8

    Article  Google Scholar 

  37. Manning P, Gossner MM, Bossdorf O, Allan E, Zhang Y, Prati D, Blüthgen N, Boch S, Böhm S, Börschig C, Hölzel N, Jung K, Klaus VH, Klein AM, Kleinebecker T, Krauss J, Lange M, Müller J, Pašalić E, Socher SA, Tschapka M, Türke M, Weiner C, Werner M, Gockel S, Hemp A, Renner SC, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Weisser WW, Fischer M (2015) Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96:1492–1501. https://doi.org/10.1890/14-1307.1

    Article  Google Scholar 

  38. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Evol Syst 11:119–161. https://doi.org/10.1146/annurev.es.11.110180.001003

    Article  Google Scholar 

  39. Melzer A, Gebauer G, Rehder H (1984) Nitrate content and nitrate reductase activity in Rumex obtusifolius L. II. Responses to nitrate starvation and nitrogen fertilization. Oecologia 63:380–385. https://doi.org/10.1007/bf00390669

    CAS  Article  PubMed  Google Scholar 

  40. Mevi-Schütz J, Goverde M, Erhardt A (2003) Effects of fertilization and elevated CO2 on larval food and butterfly nectar amino acid preference in Coenonympha pamphilus. Behav Ecol Sociobiol 54:36–43. https://doi.org/10.1007/s00265-003-0601-8

    Article  Google Scholar 

  41. Myers JH, Post BJ (1981) Plant nitrogen and fluctuations of insect populations: a test with the cinnabar moth-tansy ragwort system. Oecologia 48:151–156. https://doi.org/10.1007/bf00347957

    Article  PubMed  Google Scholar 

  42. Nakagawa S, Schielzeth H (2012) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  43. Nijssen ME, WallisDeVries MF, Siepel H (2017) Pathways for the effects of increased nitrogen deposition on fauna. Biol Conserv 212:423–431. https://doi.org/10.1016/j.biocon.2017.02.022

    Article  Google Scholar 

  44. Öckinger E, Hammarstedt O, Nilsson SG, Smith HG (2006) The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. Biol Conserv 128:564–573. https://doi.org/10.1016/j.biocon.2005.10.024

    Article  Google Scholar 

  45. Prudic KL, Oliver JC, Bowers MD (2005) Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore. Oecologia 143:578–587. https://doi.org/10.1007/s00442-005-0008-5

    Article  PubMed  Google Scholar 

  46. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 29 July 2017

  47. Raubenheimer D, Lee KP, Simpson SJ (2005) Does Bertrand’s rule apply to macronutrients? Proc R Soc B 272:2429–2434. https://doi.org/10.1098/rspb.2005.3271

    CAS  Article  PubMed  Google Scholar 

  48. Reinhardt R, Bolz R (2011) Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands. In: Binot-Hafke M, Balzer S, Becker N, Gruttke H, Haupt H, Hofbauer N, Ludwig G, Matzke-Hajek G, Strauch M (eds) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 3: Wirbellose Tiere (Teil 1). Naturschutz und Biologische Vielfalt 70. Bonn, Bad Godesberg, pp 165–194

  49. Rose S (2010) Generalist vs. Specialist? Egg laying and food plant preferences in two related lycaenid butterflies. Diploma Thesis. Institute of Landscape Ecology, Westphalian Wilhelms-University, Münster, Germany

  50. Salvagiotti F, Castellarín JM, Miralles DJ, Pedrol HM (2009) Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crop Res 113:170–177. https://doi.org/10.1016/j.fcr.2009.05.003

    Article  Google Scholar 

  51. Sarfraz RM, Dosdall LM, Keddie AB (2009) Bottom-up effects of host plant nutritional quality on Plutella xylostella (Lepidoptera: Plutellidae) and top-down effects of herbivore attack on plant compensatory ability. Eur J Entomol 106:583–594. https://doi.org/10.14411/eje.2009.073

    CAS  Article  Google Scholar 

  52. Schädler M, Roeder M, Brandl R, Matthies D (2007) Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Glob Change Biol 13:1005–1015. https://doi.org/10.1111/j.1365-2486.2007.01319.x

    Article  Google Scholar 

  53. Slansky F, Feeny P (1977) Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol Monogr 47:209–228. https://doi.org/10.2307/1942617

    Article  Google Scholar 

  54. Socher SA, Prati D, Boch S, Müller J, Baumbach H, Gockel S, Hemp A, Schöning I, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E, Weisser WW, Fischer M (2013) Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic Appl Ecol 14:126–136. https://doi.org/10.1016/j.baae.2012.12.003

    Article  Google Scholar 

  55. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  56. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879. https://doi.org/10.1126/science.1094678

    CAS  Article  PubMed  Google Scholar 

  57. Stopps GJ, White SN, Clements DR, Upadhyaya MK (2011) The biology of Canadian weeds. 149. Rumex acetosella L. Can J Plant Sci 91:1037–1052. https://doi.org/10.4141/cjps2011-042

    Article  Google Scholar 

  58. Tabashnik BE (1982) Responses of pest and non-pest Colias butterfly larvae to intraspecific variation in leaf nitrogen and water content. Oecologia 55:389–394. https://doi.org/10.1007/bf00376927

    Article  PubMed  Google Scholar 

  59. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and global extinction crisis. Science 303:1879–1881. https://doi.org/10.1126/science.1095046

    CAS  Article  PubMed  Google Scholar 

  60. Throop HL, Lerdau MT (2004) Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems 7:109–133. https://doi.org/10.1007/s10021-003-0225-x

    CAS  Article  Google Scholar 

  61. Tilman D, Fargione J, Wolff B, Ḋ’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284. https://doi.org/10.1126/science.1057544

    CAS  Article  PubMed  Google Scholar 

  62. Tscharntke T, Greiler H (1995) Insect communities, grasses, and grasslands. Annu Rev Entomol 40:535–558. https://doi.org/10.1146/annurev.en.40.010195.002535

    CAS  Article  Google Scholar 

  63. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  64. Turlure C, Radchuk V, Baguette M, Meijrink M, van den Burg A, WallisDeVries M, van Duinen G (2013) Plant quality and local adaptation undermine relocation in a bog specialist butterfly. Ecol Evol 3:244–254. https://doi.org/10.1002/ece3.427

    Article  PubMed  Google Scholar 

  65. van Dyck H, van Strien AJ, Maes D, van Swaay CAM (2009) Declines in common, widespread butterflies in a landscape under intense human use. Conserv Biol 23:957–965. https://doi.org/10.1111/j.1523-1739.2009.01175.x

    Article  PubMed  Google Scholar 

  66. van Swaay CAM, van Strien AJ, Aghababyan K, Åström S, Botham M, Brereton T, Chambers P, Collins S, Domènech Ferrés M, Escobés R, Feldmann R, Fernández-García JM, Fontaine B, Goloshchapova S, Gracianteparaluceta A, Harpke A, Heliölä J, Khanamirian G, Julliard R, Kühn E, Lang A, Leopold P, Loos J, Maes D, Mestdagh X, Monasterio Y, Munguira ML, Murray T, Musche M, Õunap E, Pettersson LB, Popoff S, Prokofev I, Roth T, Roy D, Settele J, Stefanescu C, Švitra G, Teixeira SM, Tiitsaar A, Verovnik R, Warren MS (2015) The European Butterfly Indicator for Grassland species 1990–2013. Report VS2015.009, De Vlinderstichting, Wageningen

  67. Vick JK, Young DR (2011) Spatial variation in environment and physiological strategies for forb distribution on coastal dunes. J Coastal Res 27:1113–1121. https://doi.org/10.2112/jcoastres-d-10-00156.1

    CAS  Article  Google Scholar 

  68. WallisDeVries M, Bobbink R (2017) Nitrogen deposition impacts on biodiversity in terrestrial ecosystems: mechanisms and perspectives for restoration. Biol Conserv 212:387–389. https://doi.org/10.1016/j.biocon.2017.01.017

    Article  Google Scholar 

  69. Wheeler GS, Halpern MD (1999) Compensatory responses of Samea multiplicalis larvae when fed leaves of different fertilization levels of the aquatic weed Pistia stratiotes. Entomol Exp Appl 92:205–216. https://doi.org/10.1046/j.1570-7458.1999.00539.x

    Article  Google Scholar 

  70. White TCR (1993) The inadequate environment—nitrogen and the abundance of animal. Springer, Berlin, Heidelberg

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Kurze family (Dresden) and Tommy Kästner (Dresden) for contributing to the capture of females of different species for the experiments. C:N analyses were carried out by Antje Möhlmeyer (Osnabrück). Moreover, we would like to thank two anonymous reviewers for helpful comments on an earlier version of the manuscript.

Author information

Affiliations

Authors

Contributions

SK, TF and TH designed the experiments. SK conducted the experiments, analysed the data and wrote the article. TF and TH made substantial contributions to the manuscript, revising and commenting on subsequent drafts.

Corresponding author

Correspondence to Thomas Fartmann.

Additional information

Communicated by Klaus Fischer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurze, S., Heinken, T. & Fartmann, T. Nitrogen enrichment in host plants increases the mortality of common Lepidoptera species. Oecologia 188, 1227–1237 (2018). https://doi.org/10.1007/s00442-018-4266-4

Download citation

Keywords

  • Agricultural fertilization
  • Global change
  • Host-plant quality
  • Nitrogen-limitation hypothesis
  • Rearing experiment