Solar and terrestrial radiations explain continental-scale variation in bird pigmentation

Abstract

Animals living on the earth’s surface are protected from the damaging effects of solar ultraviolet (UV) radiation by melanin pigments that color their integument. UV levels that reach the earth’s surface vary spatially, but the role of UV exposure in shaping clinal variations in animal pigmentation has never been tested. Here, we show at a continental scale in Europe that golden eagles Aquila chrysaetos reared in territories with a high solar UV-B radiation exposure deposit lower amounts of the sulphurated form of melanin (pheomelanin) in feathers and consequently develop darker plumage phenotypes than eagles from territories with lower radiation exposure. This clinal variation in pigmentation is also explained by terrestrial γ radiation levels in the rearing territories by a similar effect on the pheomelanin content of feathers, unveiling natural radioactivity as a previously unsuspected factor shaping animal pigmentation. These findings show for the first time the potential of solar and terrestrial radiations to explain pigmentation phenotype diversity in animals, including humans, at large spatial scales.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

[adapted with permission from Szegvary et al. (2007)]

Fig. 4
Fig. 5

References

  1. Alcaide M, Serrano D, Tella JL, Negro JJ (2009) Strong phylopatry derived from capture–recapture records does not lead to fine-scale genetic differentiation in lesser kestrels. J Anim Ecol 78:468–475

    Article  Google Scholar 

  2. Beckmann M, Václavík T, Manceur AM, Šprtová L, Wehrden H, Welk E, Cord AF (2014) glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol Evol 5:372–383

    Article  Google Scholar 

  3. Bivand R, Keitt T, Rowlingson B (2017) rgdal: Bindings for the geospatial data abstraction library. R package version 1.2–8. Available at: http://www.gdal.org

  4. Bräuner EV, Loft S, Sørensen M, Jensen A, Andersen CE, Ulbak K, Hertel O, Pedersen C, Tjønneland A, Kjær SK, Raaschou-Nielsen O (2015) Residential radon exposure and skin cancer incidence in a prospective Danish cohort. PLoS One 10:e0135642

    Article  Google Scholar 

  5. Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84:539–549

    CAS  Article  Google Scholar 

  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer-Verlag, New York

    Google Scholar 

  7. Comont D, Martinez Abaigar J, Albert A, Aphalo P, Causton DR, Figueroa FL, Gaberscik A, Llorens L, Hauser M-T, Jansen MAK, Kardefelt M, de la Coba Luque P, Neubert S, Núñez-Olivera E, Olsen J, Robson M, Schreiner M, Sommaruga R, Strid Å, Torre S, Turunen M, Veljovic-Jovanovic S, Verdaguer D, Vidovic M, Wagner J, Winkler JB, Zipoli G, Gwynn-Jones D (2012) UV responses of Lolium perenne raised along a latitudinal gradient across Europe: a filtration study. Physiol Plant 145:604–618

    CAS  Article  Google Scholar 

  8. Comont D, Winters A, Gomez LD, McQueen-Mason SJ, Gwynn-Jones D (2013) Latitudinal variation in ambient UV-B radiation is an important determinant of Lolium perenne forage production, quality, and digestibility. J Exp Bot 64:2193–2204

    CAS  Article  Google Scholar 

  9. Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  10. Crombie IK (1979) Variation of melanoma incidence with latitude in North America and Europe. Br J Cancer 40:774–781

    CAS  Article  Google Scholar 

  11. D’Orazio JA, Nobuhisa T, Cui R, Arya M, Spry M, Wakamatsu K, Igras V, Kunisada T, Granter SR, Nishimura EK et al (2006) Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning. Nature 443:340–344

    Article  Google Scholar 

  12. Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531

    CAS  Article  Google Scholar 

  13. Del Bino S, Ito S, Sok J, Nakanishi Y, Bastien P, Wakamatsu K, Bernerd F (2015) Chemical analysis of constitutive pigmentation of human epidermis reveals constant eumelanin to pheomelanin ratio. Pigment Cell Melanoma Res 28:707–717

    Article  Google Scholar 

  14. Fargallo JA, Laaksonen T, Korpimäki E, Wakamatsu K (2007) A melanin-based trait reflects environmental growth conditions of nestling male Eurasian kestrels. Evol Ecol 21:157–171

    Article  Google Scholar 

  15. Ferguson-Lees J, Christie DA (2001) Raptors of the world. Helm, London

    Google Scholar 

  16. Forster L, Forster P, Lutz-Bonengel S, Willkomm H, Brinkmann B (2002) Natural radioactivity and human mitochondrial DNA mutations. Proc Natl Acad Sci USA 99:13950–13954

    CAS  Article  Google Scholar 

  17. Fransson T, Kolehmainen T, Kroon C, Jansson L, Wenninger T (2010) EURING list of longevity records for European birds. Available at: http://www.euring.org/data-and-codes/longevity-list?page=1

  18. Galván I (2017) Condition-dependence of pheomelanin-based coloration in nuthatches Sitta europaea suggests a detoxifying function: implications for the evolution of juvenile plumage patterns. Sci Rep 7:9138

    Article  Google Scholar 

  19. Galván I, Alonso-Alvarez C (2011) Natural radioactivity can explain clinal variation in the expression of melanin-based traits. Evol Ecol 25:1197–1203

    Article  Google Scholar 

  20. Galván I, Jorge A (2015) Dispersive Raman spectroscopy allows the identification and quantification of melanin types. Ecol Evol 5:1425–1431

    Article  Google Scholar 

  21. Galván I, Solano F (2016) Bird integumentary melanins: biosynthesis, forms, function and evolution. Int J Mol Sci 17:520

    Article  Google Scholar 

  22. Galván I, Wakamatsu K (2016) Color measurement of the animal integument predicts the content of specific melanin forms. RSC Adv 6:79135–79142

    Article  Google Scholar 

  23. Galván I, Bijlsma RG, Negro JJ, Jarén M, Garrido-Fernández J (2010) Environmental constraints for plumage melanization in the northern goshawk Accipiter gentilis. J Avian Biol 41:523–531

    Article  Google Scholar 

  24. Galván I, Ghanem G, Møller AP (2012) Has removal of excess cysteine led to the evolution of pheomelanin? BioEssays 34:565–568

    Article  Google Scholar 

  25. Galván I, Jorge A, Ito K, Tabuchi K, Solano F, Wakamatsu K (2013) Raman spectroscopy as a non-invasive technique for the quantification of melanins in feathers and hairs. Pigment Cell Melanoma Res 26:917–923

    Article  Google Scholar 

  26. Galván I, Bonisoli-Alquati A, Jenkinson S, Ghanem G, Wakamatsu K, Mousseau TA, Møller AP (2014) Chronic exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds. Funct Ecol 28:1387–1403

    Article  Google Scholar 

  27. Galván I, Jorge A, García-Gil M (2017a) Pheomelanin molecular vibration is associated with mitochondrial ROS production in melanocytes and systemic oxidative stress and damage. Integr Biol 9:751–761

    Article  Google Scholar 

  28. Galván I, Inácio Â, Romero-Haro AA, Alonso-Alvarez C (2017b) Adaptive downregulation of pheomelanin-related Slc7a11 gene expression by environmentally induced oxidative stress. Mol Ecol 26:849–858

    Article  Google Scholar 

  29. Hansson LA, Hylander S, Sommaruga R (2007) Escape from UV threats in zooplankton: a cocktail of behavior and protective pigmentation. Ecology 88:1932–1939

    Article  Google Scholar 

  30. Hijmans RJ, van Etten J (2016) raster: Geographic data analysis and modeling. R package version 2.5-8. Available at: http://cran.r-project.org/package=raster

  31. Hofer R, Mokri C (2000) Photoprotection in tadpoles of the common frog, Rana temporaria. Photochem Photobiol 59:48–53

    CAS  Article  Google Scholar 

  32. Hsiung BK, Blackledge TA, Shawkey MD (2015) Spiders do have melanin after all. J Exp Biol 218:3632–3635

    Article  Google Scholar 

  33. Hsu SL, Moore WH, Krimm S (1976) Vibrational spectrum of the unordered polypeptide chain: a Raman study of feather keratin. Biopolymers 15:1513–1528

    CAS  Article  Google Scholar 

  34. Hull JM, Anderson R, Bradbury M, Estep JA, Ernest HB (2008) Population structure and genetic diversity in Swainson’s Hawks (Buteo swainsoni): implications for conservation. Cons Gen 9:305

    Article  Google Scholar 

  35. Ito S, Nakanishi Y, Valenzuela RK, Brilliant MH, Kolbe L, Wakamatsu K (2011) Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: application to chemical analysis of human hair melanins. Pigment Cell Melanoma Res 24:605–613

    CAS  Article  Google Scholar 

  36. Jablonski NG, Chaplin G (2010) Human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci USA 107(Suppl. 2):8962–8968

    CAS  Article  Google Scholar 

  37. Kim E, Panzella L, Micillo R, Bentley WE, Napolitano A, Payne GF (2015) Reverse engineering applied to red human hair pheomelanin reveals redox-buffering as a pro-oxidant mechanism. Sci Rep 5:18447

    CAS  Article  Google Scholar 

  38. Lowe C, Goodman-Lowe G (1996) Suntanning in hammerhead sharks. Nature 383:677

    CAS  Article  Google Scholar 

  39. Marionnet C, Pierrard C, Golebiewski C, Bernerd F (2014) Diversity of biological effects induced by longwave UVA rays (UVA1) in reconstructed skin. PLoS One 9:e105263

    Article  Google Scholar 

  40. Megía-Palma R, Jorge A, Reguera S (2018) Raman spectroscopy reveals the presence of both eumelanin and pheomelanin in the skin of lacertids. J Herpetol 52(1):67–73

    Article  Google Scholar 

  41. Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, Guerrero CR, Lennerz JK, Mihm MC, Wargo JA et al (2012) An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491:449–453

    CAS  Article  Google Scholar 

  42. Møller AP, Mousseau TA (2013) The effects of natural variation in background radioactivity on humans, animals and other organisms. Biol Rev 88:226–254

    Article  Google Scholar 

  43. Morgan AM, Lo J, Fisher DE (2013) How does pheomelanin synthesis contribute to melanomagenesis? BioEssays 35:672–676

    CAS  Article  Google Scholar 

  44. Napolitano A, Panzella L, Monfrecola G, d’Ischia M (2014) Pheomelanin-induced oxidative stress: bright and dark chemistry bridging red hair phenotype and melanoma. Pigment Cell Melanoma Res 27:721–733

    CAS  Article  Google Scholar 

  45. Neyfakh EA, Alimbekova AI, Ivanenko GF (1998) Radiation-induced lipoperoxidative stress in children coupled with deficit of essential antioxidants. Biochemistry (Moscow) 63:977–987

    CAS  Google Scholar 

  46. Nybakken L, Aubert S, Bilger W (2004) Epidermal UV-screening of arctic and alpine plants along a latitudinal gradient in Europe. Polar Biol 27:391–398

    Article  Google Scholar 

  47. Panzella L, Leone L, Greco G, Vitiello G, D’errico G, Napolitano A, d’Ischia M (2014) Red human hair pheomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanomagenesis. Pigment Cell Melanoma Res 27:244–252

    CAS  Article  Google Scholar 

  48. Pavel S, Smit NPM, Pizinger K (2011) Dysplastic nevi as precursor melanoma lesions. In: Borovanský J, Riley PA (eds) Melanins and melanosomes: biosynthesis, biogenesis, physiological, and pathological functions. Wiley-Blackwell, Weinheim, pp 383–393

    Google Scholar 

  49. Peteya JA, Clarke JA, Li Q, Gao KQ, Shawkey MD (2017) The plumage and colouration of an enantiornithine bird from the Early Cretaceous of China. Palaeontology 60:55–71

    Article  Google Scholar 

  50. Phillips RL, Cummings JL, Berry JD (1991) Responses of breeding golden eagles to relocation. Wildl Soc Bull 19:430–434

    Google Scholar 

  51. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2017) nlme: Linear and nonlinear mixed effects models. R package version 3.1-131. Available at: https://cran.r-project.org/package=nlme

  52. Polidori C, Jorge A, Ornosa C (2017) Eumelanin and pheomelanin are predominant pigments in bumblebee (Apidae: Bombus) pubescence. PeerJ 5:e3300

    Article  Google Scholar 

  53. Poston JP, Hasselquist D, Stewart IRK, Westneat DF (2005) Dietary amino acids influence plumage traits and immune responses of male house sparrows, Passer domesticus, but not as expected. Anim Behav 70:1171–1181

    Article  Google Scholar 

  54. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33

    CAS  Article  Google Scholar 

  55. Sarkar AK (2004) An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants. BMC Dermatol 4:15

    Article  Google Scholar 

  56. Schreiber RW, Schreiber EA, Peele AM, Burtt EH Jr (2006) Pattern of damage to albino Great Frigatebird flight feathers supports hypothesis of abrasion by airborne particles. Condor 108:736–741

    Article  Google Scholar 

  57. Seckmeyer G, Pissulla D, Glandorf M, Henriques D, Johnsen B, Webb A, Siani A-M, Bais A, Kjeldstad B, Brogniez C, Lenoble J, Gardiner B, Kirsch P, Koskela T, Kaurola J, Uhlmann B, Slaper H, den Outer P, Janouch M, Werle P, Gröbner J, Mayer B, de la Casiniere A, Simic S, Carvalho F (2008) Variability of UV irradiance in Europe. Photochem Photobiol 84:172–179

    CAS  PubMed  Google Scholar 

  58. Spycher BD, Lupatsch JE, Zwahlen M, Röösli M, Niggli F, Grotzer MA, Rischewski J, Egger M, Kuehni CE, for the Swiss Pediatric Oncology Group and the Swiss National Cohort (2015) Background ionizing radiation and the risk of childhood cancer: a census-based nationwide cohort study. Environ Health Perspect 123:622–628

    Article  Google Scholar 

  59. Swann HK (1924) On the races of the golden eagle (Aquila chrysaëtos). Bull Br Orn Club 45:64–73

    Google Scholar 

  60. Szegvary T, Conen F, Stöhlker U, Dubois G, Bossew P, de Vries G (2007) Mapping terrestrial & γ-dose rate in Europe based on routine monitoring data. Radiat Meas 42:1561–1572

    CAS  Article  Google Scholar 

  61. Takaki Y, Kawahara T, Kitamura H, Endo K-I, Kudo T (2009) Genetic diversity and genetic structure of northern goshawk Accipiter gentilis populations in eastern Japan and central Asia. Cons Genet 10(269):279

    Google Scholar 

  62. Tao Z, Zha Y, Akiba S, Sun Q, Zou J, Li J, Liu Y, Kato H, Sugahara T, Wei L (2000) Cancer mortality in the high background radiation areas of Yangjiang, China during the period between 1979 and 1995. J Rad Res 41(Suppl):S31–S41

    Article  Google Scholar 

  63. Vernet M, Diaz SB, Fuenzalida HA, Camilion C, Booth CR, Cabrera S, Casiccia C, Deferrari G, Lovengreen C, Paladini A, Pedroni J, Rosales A, Zagarese H (2009) Quality of UVR exposure for different biological systems along a latitudinal gradient. Photochem Photobiol Sci 8:1329–1345

    CAS  Article  Google Scholar 

  64. Wang C, Han XS, Li FF, Huang S, Qin YW, Zhao XX, Jing Q (2016a) Forkhead containing transcription factor Albino controls tetrapyrrole-based body pigmentation in planarian. Cell Disc 2:16029

    CAS  Article  Google Scholar 

  65. Wang H, Osseiran S, Igras V, Nichols AJ, Roider EM, Pruessner J, Tsao H, Fisher DE, Evans CL (2016b) In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin. Sci Rep 6:37986

    CAS  Article  Google Scholar 

Download references

Acknowledgements

IG is supported by a Ramón y Cajal Fellowship (RYC-2012-10237) from the Spanish Ministry of Economy and Competitiveness (MINECO). We thank Jānis Ķuze, Carl Knoff, Peter L. Pap and Gabriel Banderet for field work in Latvia, Norway, Romania and Switzerland, respectively. Metod Macek and Anton Sedlak helped with field work in Slovakia. Ulf Johansson provided us with samples from the Swedish Museum of Natural History. Rafael Márquez helped with the spectrophotometric analyses of feathers. T. Szegvary kindly allowed us to use their map of terrestrial γ-dose rates for Europe. Four reviewers commented on the manuscript.

Author information

Affiliations

Authors

Contributions

IG conceived the study, contributed to sampling, analyzed the data and wrote the manuscript. AJ conducted the analyses of Raman spectroscopy. CP, DS, DJH, CI, JK, JTN, TO, GS and MS contributed to sampling. JJN contributed to sampling and manuscript writing.

Corresponding author

Correspondence to Ismael Galván.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of animal rights

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Communicated by Indrikis Krams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 64 kb)

Supplementary material 2 (PDF 523 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galván, I., Jorge, A., Pacheco, C. et al. Solar and terrestrial radiations explain continental-scale variation in bird pigmentation. Oecologia 188, 683–693 (2018). https://doi.org/10.1007/s00442-018-4238-8

Download citation

Keywords

  • Animal coloration
  • Melanins
  • Natural radioactivity
  • Pigmentation
  • UV radiation