Skip to main content

Interspecific interactions are conditional on temperature in an Appalachian stream salamander community

Abstract

Differences in the rates of responses to climate change have the potential to disrupt well-established ecological interactions among species. In semi-aquatic communities, competitive asymmetry based on body size currently maintains competitive exclusion and coexistence via interference competition. Elevated temperatures are predicted to have the strongest negative effects on large species and aquatic species. Our objectives were to evaluate the interaction between the effects of elevated temperatures and competitor identity on growth and habitat selection behavior of semi-aquatic salamanders in stream mesocosms. We observed interference competition between small and large species. Elevated temperatures had a negative effect on the larger species and a neutral effect on the smaller species. At elevated temperatures, the strength of interference competition declined, and the smaller species co-occupied the same aquatic cover objects as the larger species more frequently. Disruptions in competitive interactions in this community may affect habitat use patterns and decrease selection for character displacement among species. Determining how biotic interactions change along abiotic gradients is necessary to predict the future long-term stability of current communities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adams DC (2010) Parallel evolution of character displacement driven by competitive selection in terrestrial salamanders. BMC Evol Biol 10:72

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adams DC, West ME, Collyer ML (2007) Location-specific sympatric morphological divergence as a possible response to species interactions in West Virginia Plethodon salamander communities. J Anim Ecol 76:289–295

    Article  PubMed  Google Scholar 

  3. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylr M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109

    Google Scholar 

  4. Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, New York

    Book  Google Scholar 

  5. Angilletta MJ Jr, Dunham AE (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat 162:332–342

    Article  PubMed  Google Scholar 

  6. Arendt JD (2011) Size fecundity relationships, growth trajectories, and the temperature size rule for ectotherms. Evolution 65:43–51

    Article  PubMed  Google Scholar 

  7. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  8. Bergmann C (1847) About the relationships between heat conservation and body size of animals. Goett Stud 1:595–708 (originally in German)

    Google Scholar 

  9. Bernardo J, Spotila JR (2006) Physiological constraints on organismal response to global warming: mechanistic insights from clinally varying populations and implications for assessing endangerment. Biol Lett 2:135–139

    Article  PubMed  Google Scholar 

  10. Bernardo J, Ossola RJ, Spotila J, Crandall KA (2007) Interspecies physiological variation as a tool for cross-species assessments of global warming-induced endangerment: validation of an intrinsic determinant of macroecological and phylogeographic structure. Biol Lett 3:695–699

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blaustein AR, Walls SC, Bancroft BA, Lawler JJ, Searle CL, Gervasi SS (2010) Direct and indirect effects of climate change on amphibian populations. Diversity 2:281–313

    Article  Google Scholar 

  12. Brose U (2010) Body mass constraints on foraging behavior determine population and food web dynamics. Funct Ecol 24:28–34

    Article  Google Scholar 

  13. Bruce RC (2008) Intraguild interactions and population regulation in plethodontid salamanders. Herpetol Monogr 22:31–53

    Article  Google Scholar 

  14. Bruce RC (2016) Relative growth rates in three species of Desmognathus (Amphibia: Plethodontidae). Herpetologica 72:174–180

    Article  Google Scholar 

  15. Camp CD, Tilley SG, Austin RM Jr, Marshall JL (2002) A new species of black-bellied salamander (genus Desmognathus) from the Appalachian Mountains of northern Georgia. Herpetologica 58:471–484

    Article  Google Scholar 

  16. Carr DE, Taylor DH (1985) Experimental evaluation of population interactions among three sympatric species of Desmognathus. J Herpetol 19:507–514

    Article  Google Scholar 

  17. Caruso NM, Sears MW, Adams DC, Lips KR (2014) Widespread rapid reductions in body size of adult salamanders in response to climate change. Glob Change Biol 20:1751–1759

    Article  Google Scholar 

  18. Cecala KK, Maerz JC (2016) Effects of landscape disturbance on fine-scale phototaxic behaviors by larval stream salamanders. Can J Zool 94:7–13

    Article  Google Scholar 

  19. Cecala KK, Noggle W, Burns S (2017) Negative phototaxis results from avoidance of light and temperature in stream salamander larvae. J Herpetol 51:263–269

    Article  Google Scholar 

  20. Connette GM, Crawford JA, Peterman WE (2015) Climate change and shrinking salamanders: alternative mechanisms for changes in plethodontid salamander body size. Glob Change Biol 21:2834–2843

    Article  Google Scholar 

  21. Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci USA 106:12788–12793

    CAS  Article  PubMed  Google Scholar 

  22. Davic RD, Welsh HH Jr (2004) On the ecological roles of salamanders. Annu Rev Ecol Evol Syst 35:405–434

    Article  Google Scholar 

  23. Dore MHI (2005) Climate change and changes in global precipitation patterns: what do we know? Environ Int 31:1167–1181

    Article  PubMed  Google Scholar 

  24. Edeline E, Lacroix G, Delire C, Poulet N, Legendre S (2013) Ecological emergence of thermal clines in body size. Glob Change Biol 19:3062–3068

    Article  Google Scholar 

  25. Ennen JR, Davenport JM, Alford KF (2016) Evidence for asymmetric competition among headwater stream vertebrates. Hydrobiologia 772:207–213

    Article  Google Scholar 

  26. Feder ME (1983) Integrating the ecology and physiology of plethodontid salamanders. Herpetologica 39:291–310

    Google Scholar 

  27. Feder ME, Londos PL (1984) Hydric constraints upon foraging in a terrestrial salamander, Desmognathus ochrophaeus (Amphibia: Plethodontidae). Oecologia 64:413–418

    Article  PubMed  Google Scholar 

  28. Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc Natl Acad Sci USA 109:19310–19314

    CAS  Article  PubMed  Google Scholar 

  29. Gardner J, Peters A, Kearney M, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26:285–291

    Article  PubMed  Google Scholar 

  30. Grant EHC (2014) Please don’t misuse the museum: ‘declines’ may be statistical. Glob Change Biol 21:1018–1024

    Article  Google Scholar 

  31. Grover MC, Wilbur HM (2002) Ecology of ecotones: interactions between salamanders on a complex environmental gradient. Ecology 83:2112–2123

    Article  Google Scholar 

  32. Hairston NG (1980) Species packing in the salamander genus Desmognathus: what are the interspecific interactions involved? Am Nat 115:354–366

    Article  Google Scholar 

  33. Hairston NG (1987) Community ecology and salamander guilds. Cambridge University Press, Cambridge

    Google Scholar 

  34. Hairston NG, Nishikawa KC, Stenhouse SL (1987) The evolution of competing species of terrestrial salamanders: niche partitioning or interference? Evol Ecol 1:247–262

    Article  Google Scholar 

  35. Houck MA, Bellis ED (1972) Comparative tolerance to desiccation in the salamanders Desmognathus f. fuscus and Desmognathus o. ochrophaeus. J Herpetol 6:209–215

    Article  Google Scholar 

  36. Isaak DJ, Rieman BE (2013) Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms. Glob Change Biol 19:742–751

    Article  Google Scholar 

  37. Jaeger RG (1979) Seasonal spatial distributions of the terrestrial salamander Plethodon cinereus. Herpetologica 35:90–93

    Google Scholar 

  38. Jonsson T (2014) Trophic links and the relationship between predator and prey body sizes in food webs. Community Ecol 15:54–64

    Article  Google Scholar 

  39. Keen WH (1982) Habitat selection and interspecific competition in two species of plethodontid salamanders. Ecology 63:94–102

    Article  Google Scholar 

  40. Kozak KH, Wiens JJ (2010) Niche conservatism drives elevational diversity patterns in Appalachian salamanders. Am Nat 176:40–54

    Article  PubMed  Google Scholar 

  41. Kuznetsova A, Brockhoff PB, Christensen RHB (2016) Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). http://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf. Accessed 1 Feb 2017

  42. Li Y, Cohen JM, Rohr JR (2013) Review and synthesis of the effects of climate change on amphibians. Integr Zool 8:145–161

    Article  PubMed  Google Scholar 

  43. Liles LA, Cecala KK, Ennen JR, Davenport JM (2017) Elevated temperatures alter competitive outcomes and body condition in southern Appalachian salamanders. Anim Conserv 20:502–510

    Article  Google Scholar 

  44. Long SL, Jackson CR (2013) Variation of stream temperatures among mesoscale habitats within stream reaches: southern Appalachia. Hydrol Process 28:3041–3052

    Article  Google Scholar 

  45. Mitchell SM, Ennen JR, Cecala KK, Davenport JM (2017) Ex-situ PIT-tag retention study in two Desmognathus species. Herpetol Rev 48:313–316

    Google Scholar 

  46. Narum SR, Campbell NR, Meyer KA, Miller MR, Hardy RW (2013) Thermal adaptation and acclimation of ectotherms from differing aquatic climates. Mol Ecol 22:3090–3097

    Article  PubMed  Google Scholar 

  47. Naya DE, Naya H, Cook J (2017) Climate change and body size trends in aquatic and terrestrial ectotherms: does habitat matter? PLoS ONE. https://doi.org/10.1371/journal.pone.0183051

    Article  PubMed  PubMed Central  Google Scholar 

  48. Niehaus AC, Angiletta MJ Jr, Sears MW, Franklin CE, Wilson RS (2012) Predicting the physiological performance of ectotherms in fluctuating thermal environments. J Exp Biol 215:694–701

    Article  PubMed  Google Scholar 

  49. Ohlberger J (2013) Climate warming and ectotherm body size—from individual physiology to community ecology. Funct Ecol 27:991–1001

    Article  Google Scholar 

  50. Ohlberger J, Edeline E, Vøllestad LA, Stenseth NC, Claessen D (2011) Temperature-driven regime shifts in the dynamics of size-structured populations. Am Nat 177:211–223

    Article  PubMed  Google Scholar 

  51. Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S, Murdock CC, Thomas MB (2013) Temperature variation makes ectotherms more sensitive to climate change. Glob Change Biol 19:2373–2380

    Article  Google Scholar 

  52. Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891

    Article  Google Scholar 

  53. Persson L (1985) Asymmetrical competition: are larger animals competitively superior? Am Nat 126:261–266

    Article  Google Scholar 

  54. Peterman WE, Crawford JA, Semlitsch RD (2008) Productivity and significance of headwater streams: population structure and biomass of the black-bellied salamander (Desmognathus quadramaculatus). Freshw Biol 53:347–357

    Google Scholar 

  55. Peterman WE, Crawford JA, Hocking DJ (2016) Effects of elevation on plethodontid salamander body size. Copeia 104:202–208

    Article  Google Scholar 

  56. Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  57. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

  58. Price JE, Secki Shields JA (2002) Size-dependent interactions between two terrestrial amphibians, Plethodon cinereus and Plethodon glutinosus. Herpetologica 58:141–155

    Article  Google Scholar 

  59. Raffel TR, Rohr JR, Kiesecker JM, Hudson PJ (2006) Negative effects of changing temperature on amphibian immunity under field conditions. Funct Ecol 20:819–828

    Article  Google Scholar 

  60. Reading CJ (2007) Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 151:125–131

    CAS  Article  PubMed  Google Scholar 

  61. Reuman DC, Holt RD, Yvon Durocher G (2014) A metabolic perspective on competition and body size reductions with warming. J Anim Ecol 83:59–69

    Article  PubMed  Google Scholar 

  62. Riddell EA, Sears MW (2015) Geographic variation of resistance to water loss within two species of lungless salamanders: implications for activity. Ecosphere 6:1–16

    Article  Google Scholar 

  63. Rissler LJ, Wilbur HM, Taylor DR (2004) The influence of ecology and genetics on behavioral variation in salamander populations across the Eastern Continental Divide. Am Nat 164:201–213

    Article  PubMed  Google Scholar 

  64. Rollinson N, Rowe L (2018) Temperature-dependent oxygen limitation and the rise of Bergmann’s Rule in species with aquatic respiration. Evolution. https://doi.org/10.1111/evo.13458

    Article  PubMed  Google Scholar 

  65. Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39

    CAS  Article  PubMed  Google Scholar 

  66. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  67. Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406

    Article  Google Scholar 

  68. Sinervo B, Mendez-De-La-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN, Gadsden H (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899

    CAS  Article  PubMed  Google Scholar 

  69. Southerland MT (1986) Coexistence of three congeneric salamanders: the importance of habitat and body size. Ecology 67:721–728

    Article  Google Scholar 

  70. R Core Team (2016) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 1 Jan 2016

  71. Urban MS, Tewksbury JJ, Sheldon KS (2012) On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc R Soc Lond Biol Sci 279:2072–2080

    Article  Google Scholar 

  72. Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc Lond B Biol Sci 365:2025–2034

    Article  PubMed  PubMed Central  Google Scholar 

  73. Van Vliet MTH, Franssen WHP, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P (2013) Global river discharge and water temperature under climate change. Glob Environ Change 23:450–464

    Article  Google Scholar 

  74. Vanni MJ, Flecker AS, Hood JM, Headworth JL (2002) Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecol Lett 5:285–293

    Article  Google Scholar 

  75. Venables WM, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  76. Vucic-Pestic O, Rall BC, Kalinkat G, Brose U (2010) Allometric functional response model: body masses constrain interaction strengths. J Anim Ecol 79:249–256

    Article  PubMed  Google Scholar 

  77. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    CAS  Article  PubMed  Google Scholar 

  78. Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Evol Syst 15:393–425

    Article  Google Scholar 

  79. Wilson DS (1975) The adequacy of body size as a niche difference. Am Nat 109:769–784

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Saunders Drukker, Vanessa Moss, Katie Sutton, Lily Tidwell, and Emma Zeitler for assistance with animal collection, Alexandra Miles for assistance with habitat data collection, and Katie McGhee, Jon Evans, Brandon Moore and two anonymous reviewers for comments on earlier versions of this manuscript.

Funding

Funding for this project was provided by the Aquarium and Zoos Facilities Association’s Clark Waldram Fund.

Author information

Affiliations

Authors

Contributions

MH, KC, JE and JD designed the experiments; MH, KC, JE, SM and JD performed the research and collected the data; MH and KC analyzed the data and wrote the first draft with contributions from all.

Corresponding author

Correspondence to Kristen K. Cecala.

Additional information

Communicated by Ross Andrew Alford.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoffacker, M.L., Cecala, K.K., Ennen, J.R. et al. Interspecific interactions are conditional on temperature in an Appalachian stream salamander community. Oecologia 188, 623–631 (2018). https://doi.org/10.1007/s00442-018-4228-x

Download citation

Keywords

  • Climate change
  • Competition
  • Interference
  • Size-structured
  • Plethodontidae