, Volume 188, Issue 2, pp 441–450 | Cite as

The effects of changes in water and nitrogen availability on alien plant invasion into a stand of a native grassland species

  • Yanjie LiuEmail author
  • Min Liu
  • Xingliang XuEmail author
  • Yuqiang Tian
  • Zhen Zhang
  • Mark van Kleunen
Population ecology – original research


Plant invasions are a major component of global change, but they may be affected by other global change components. Here we used a mesocosm-pot experiment to test whether high water availability, nitrogen (N) enrichment and their interaction promote performance of three invasive alien plants (Lepidium virginicum, Lolium perenne and Medicago sativa) when competing with a native Chinese grassland species (Agropyron cristatum). Single plants of the three invasive and the one native species were grown in the center of pots with a matrix of the native A. cristatum under low, intermediate or high water availability and low or high N availability. The invasive species L. virginicum and M. sativa grew larger, and produced a higher biomass relative to competitors than the native species A. cristatum did. Increasing water availability promoted biomass production of all species, but water availability did not change the biomass of the central plants relative to that of the competitors. Nitrogen addition also increased biomass production of all species, and it increased the biomass of the central plants more so than that of the competitors. The positive effect of N addition on the biomass of the central plants relative to that of the competitors increased with increasing water availability. However, compared to central plants of the native species, the positive effect of N addition on the relative biomass of L. virginicum decreased when water availability increased. These interactions indicate that future changes in water availability and N enrichment may affect the invasion success of different alien species differently.


Exotic Global change Non-native Plant invasion Plant–plant interaction 



We thank Huimin Li and Jingjing Song for their help in the field. This study was supported by National Natural Science Foundation of China (nos. 31470560 and 31540051). We thank Christa Gommel for English editing.

Author contribution statement

YL conceived the experiments. YL and XX designed the experiments. ML performed the experiments and collected data. YL and MvK analyzed the data. YL wrote the first draft, with further inputs from ML, XX, ZZ, YT and MvK.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2018_4216_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 31 kb)
442_2018_4216_MOESM2_ESM.docx (32 kb)
Supplementary material 2 (DOCX 32 kb)
442_2018_4216_MOESM3_ESM.docx (36 kb)
Supplementary material 3 (DOCX 35 kb)
442_2018_4216_MOESM4_ESM.docx (44 kb)
Supplementary material 4 (DOCX 44 kb)


  1. Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89:2140–2153. CrossRefPubMedGoogle Scholar
  2. Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob Change Biol 16:358–372. CrossRefGoogle Scholar
  3. Bloor JMG, Pichon P, Falcimagne R, Leadley P, Soussana JF (2010) Effects of warming, summer drought, and CO2 enrichment on aboveground biomass production, flowering phenology, and community structure in an upland grassland ecosystem. Ecosystems 13:888–900. CrossRefGoogle Scholar
  4. Boulant N, Kunstler G, Rambal S, Lepart J (2008) Seed supply, drought, and grazing determine spatio-temporal patterns of recruitment for native and introduced invasive pines in grasslands. Divers Distrib 14:862–874. CrossRefGoogle Scholar
  5. Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010a) Predicting plant invasions in an era of global change. Trends Ecol Evol 25:310–318. CrossRefPubMedGoogle Scholar
  6. Bradley BA, Wilcove DS, Oppenheimer M (2010b) Climate change increases risk of plant invasion in the Eastern United States. Biol Invas 12:1855–1872. CrossRefGoogle Scholar
  7. Bredenkamp GJ, Spada F, Kazmierczak E (2002) On the origin of northern and southern hemisphere grasslands. Plant Ecol 163:209–229. CrossRefGoogle Scholar
  8. Crous CJ, Jacobs SM, Esler KJ (2012) Drought-tolerance of an invasive alien tree, Acacia mearnsii and two native competitors in fynbos riparian ecotones. Biol Invas 14:619–631. CrossRefGoogle Scholar
  9. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431. CrossRefPubMedGoogle Scholar
  10. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. CrossRefGoogle Scholar
  11. Dawson W, Fischer M, van Kleunen M (2012) Common and rare plant species respond differently to fertilisation and competition, whether they are alien or native. Ecol Lett 15:873–880. CrossRefPubMedGoogle Scholar
  12. Dostal P, Dawson W, van Kleunen M, Keser LH, Fischer M (2013) Central European plant species from more productive habitats are more invasive at a global scale. Glob Ecol Biogeogr 22:64–72. CrossRefGoogle Scholar
  13. Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:e319. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fay PA, Prober SM, Harpole WS, Knops JM, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley YM, Chu C, Cleland EE, Collins SL, Davies KF, Du G, Feng X, Firn J, Gruner DS, Hagenah N, Hautier Y, Heckman RW, Jin VL, Kirkman KP, Klein J, Ladwig LM, Li Q, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Risch AC, Schutz M, Stevens CJ, Wedin DA, Yang LH (2015) Grassland productivity limited by multiple nutrients. Nat Plants 1:15080. CrossRefPubMedGoogle Scholar
  15. Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gioria M, Osborne BA (2014) Resource competition in plant invasions: emerging patterns and research needs. Front Plant Sci 5:501. CrossRefPubMedPubMedCentralGoogle Scholar
  17. González AL, Kominoski JS, Danger M, Ishida S, Iwai N, Rubach A (2010) Can ecological stoichiometry help explain patterns of biological invasions? Oikos 119:779–790. CrossRefGoogle Scholar
  18. Haeuser E, Dawson W, van Kleunen M (2017) The effects of climate warming and disturbance on the colonization potential of ornamental alien plant species. J Ecol 105:1698–1708. CrossRefGoogle Scholar
  19. Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Glob Change Biol 13:2341–2348. CrossRefGoogle Scholar
  20. Holland EA, Braswell BH, Sulzman J, Lamarque JF (2005) Nitrogen deposition onto the United States and western Europe: synthesis of observations and models. Ecol Appl 15:38–57. CrossRefGoogle Scholar
  21. Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG (2004) Convergence across biomes to a common rain-use efficiency. Nature 429:651–654. CrossRefPubMedGoogle Scholar
  22. IPCC (2013) Working group 1, fifth assessment report. Cambridge Univ. Press, CambridgeGoogle Scholar
  23. Jia J, Dai Z, Li F, Liu Y (2016) How will global environmental changes affect the growth of alien plants? Front Plant Sci 7:1623. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kalusova V, Chytry M, van Kleunen M, Mucina L, Dawson W, Essl F, Kreft H, Pergl J, Weigelt P, Winter M, Pysek P (2017) Naturalization of European plants on other continents: the role of donor habitats. Proc Natl Acad Sci USA. CrossRefPubMedGoogle Scholar
  25. Keller ED, Baisden WT, Timar L, Mullan B, Clark A (2014) Grassland production under global change scenarios for New Zealand pastoral agriculture. Geosci Model Dev 7:2359–2391. CrossRefGoogle Scholar
  26. Keser LH, Dawson W, Song YB, Yu FH, Fischer M, Dong M, van Kleunen M (2014) Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones. Oecologia 174:1055–1064. CrossRefPubMedGoogle Scholar
  27. Keser LH, Visser EJW, Dawson W, Song YB, Yu FH, Fischer M, Dong M, van Kleunen M (2015) Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species. Front Plant Sci 6. CrossRefGoogle Scholar
  28. Kuebbing SE, Nunez MA (2016) Invasive non-native plants have a greater effect on neighbouring natives than other non-natives. Nat Plants 2. CrossRefGoogle Scholar
  29. Kueffer C, Pysek P, Richardson DM (2013) Integrative invasion science: model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol 200:615–633. CrossRefPubMedGoogle Scholar
  30. Lauenroth WK (1979) Grassland primary production: North American grasslands in perspective. In: French NR (ed) Perspectives in grassland ecology: Results and applications of the us/ibp grassland biome study. Springer, New York, pp 3–24CrossRefGoogle Scholar
  31. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. CrossRefPubMedGoogle Scholar
  32. Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519:171–180. CrossRefPubMedGoogle Scholar
  33. Li JZ, Lin S, Taube F, Pan QM, Dittert K (2011) Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant Soil 340:253–264. CrossRefGoogle Scholar
  34. Li QY, Xu L, Pan XB, Zhang LZ, Li C, Yang N, Qi JG (2016) Modeling phenological responses of Inner Mongolia grassland species to regional climate change. Environ Res Lett 11:1–13. CrossRefGoogle Scholar
  35. Liu Y, van Kleunen M (2017) Responses of common and rare aliens and natives to nutrient availability and fluctuations. J Ecol 105:1111–1122. CrossRefGoogle Scholar
  36. Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013) Enhanced nitrogen deposition over China. Nature 494:459–462. CrossRefGoogle Scholar
  37. Liu Y, Oduor AMO, Zhang Z, Manea A, Tooth IM, Leishman MR, Xu X, van Kleunen M (2017) Do invasive alien plants benefit more from global environmental change than native plants? Glob Change Biol 23:3363–3370. CrossRefGoogle Scholar
  38. Lu XT, Han XG (2010) Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant Soil 327:481–491. CrossRefGoogle Scholar
  39. MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385CrossRefGoogle Scholar
  40. Martı́nez-Vilalta J, Piñol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manag 161:247–256. CrossRefGoogle Scholar
  41. Naz BS, Kao SC, Ashfaq M, Rastogi D, Mei R, Bowling LC (2016) Regional hydrologic response to climate change in the conterminous United States using high-resolution hydroclimate simulations. Glob Planet Change 143:100–117. CrossRefGoogle Scholar
  42. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Evol Syst 4:25–51CrossRefGoogle Scholar
  43. Ouyang SN, Tian YQ, Liu QY, Zhang L, Sun Y, Xu XL, Liu YH (2016) Symbiotic nitrogen fixation and interspecific transfer by Caragana microphylla in a temperate grassland with N15 dilution technique. Appl Soil Ecol 108:221–227. CrossRefGoogle Scholar
  44. Pearson DE, Ortega YK, Maron JL (2017) The tortoise and the hare: reducing resource availability shifts competitive balance between plant species. J Ecol 105:999–1009. CrossRefGoogle Scholar
  45. Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12:470–476. CrossRefGoogle Scholar
  46. Pyšek P, Pergl J, Essl F, Lenzner B, Dawson W, Kreft H, Weigelt P, Winter M, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cardenas D, Cardenas-Toro J, Castano N, Chacon E, Chatelain C, Dullinger S, Ebel AL, Figueiredo E, Fuentes N, Genovesi P, Groom QJ, Henderson L, Inderjit Kupriyanov A, Masciadri S, Maurel N, Meerman J, Morozova O, Moser D, Nickrent D, Nowak PM, Pagad S, Patzelt A, Pelser PB, Seebens H, Shu WS, Thomas J, Velayos M, Weber E, Wieringa JJ, Baptiste MP, van Kleunen M (2017) Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89:203–274. CrossRefGoogle Scholar
  47. Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993. CrossRefPubMedGoogle Scholar
  48. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. CrossRefGoogle Scholar
  49. Sala OE, Gherardi LA, Reichmann L, Jobbagy E, Peters D (2012) Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos Trans R Soc Lond B Biol Sci 367:3135–3144. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Scherer-Lorenzen M, Elend A, Nöllert S, Schulze E-D (2000) Plant invasions in Germany: General aspects and impact of nitrogen deposition. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, D.C., pp 351–368Google Scholar
  51. Scherer-Lorenzen M, Venterink HO, Buschmann H (2007) Nitrogen enrichment and plant invasions: the importance of nitrogen-fixing plants and anthropogenic eutrophication. In: Nentwig W (ed) Biol Invasions. Springer, Berlin, pp 163–180CrossRefGoogle Scholar
  52. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. CrossRefGoogle Scholar
  53. Seabloom EW, Harpole WS, Reichman OJ, Tilman D (2003) Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc Natl Acad Sci USA 100:13384–13389. CrossRefPubMedGoogle Scholar
  54. Seabloom EW, Borer ET, Buckley YM, Cleland EE, Davies KF, Firn J, Harpole WS, Hautier Y, Lind EM, MacDougall AS, Orrock JL, Prober SM, Adler PB, Anderson TM, Bakker JD, Biederman LA, Blumenthal DM, Brown CS, Brudvig LA, Cadotte M, Chu C, Cottingham KL, Crawley MJ, Damschen EI, Dantonio CM, DeCrappeo NM, Du G, Fay PA, Frater P, Gruner DS, Hagenah N, Hector A, Hillebrand H, Hofmockel KS, Humphries HC, Jin VL, Kay A, Kirkman KP, Klein JA, Knops JM, La Pierre KJ, Ladwig L, Lambrinos JG, Li Q, Li W, Marushia R, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan J, Mortensen B, O’Halloran LR, Pyke DA, Risch AC, Sankaran M, Schuetz M, Simonsen A, Smith MD, Stevens CJ, Sullivan L, Wolkovich E, Wragg PD, Wright J, Yang L (2015) Plant species’ origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nat Commun 6:7710. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Seebens H, Essl F, Dawson W, Fuentes N, Moser D, Pergl J, Pysek P, van Kleunen M, Weber E, Winter M, Blasius B (2015) Global trade will accelerate plant invasions in emerging economies under climate change. Glob Change Biol 21:4128–4140. CrossRefGoogle Scholar
  56. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pysek P, Winter M, Arianoutsou M, Bacher S, Blasius B, Brundu G, Capinha C, Celesti-Grapow L, Dawson W, Dullinger S, Fuentes N, Jager H, Kartesz J, Kenis M, Kreft H, Kuhn I, Lenzner B, Liebhold A, Mosena A, Moser D, Nishino M, Pearman D, Pergl J, Rabitsch W, Rojas-Sandoval J, Roques A, Rorke S, Rossinelli S, Roy HE, Scalera R, Schindler S, Stajerova K, Tokarska-Guzik B, van Kleunen M, Walker K, Weigelt P, Yamanaka T, Essl F (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990. CrossRefPubMedGoogle Scholar
  58. Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. CrossRefGoogle Scholar
  59. Snyman HA (2002) Short-term response of rangeland botanical composition and productivity to fertilization (N and P) in a semi-arid climate of South Africa. J Arid Environ 50:167–183. CrossRefGoogle Scholar
  60. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  61. van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245. CrossRefPubMedGoogle Scholar
  62. van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cardenas D, Cardenas-Toro J, Castano N, Chacon E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Groom QJ, Henderson L, Inderjit Kupriyanov A, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu WS, Thomas J, Velayos M, Wieringa JJ, Pysek P (2015a) Global exchange and accumulation of non-native plants. Nature 525:100–103. CrossRefPubMedGoogle Scholar
  63. van Kleunen M, Dawson W, Maurel N (2015b) Characteristics of successful alien plants. Mol Ecol 24:1954–1968. CrossRefPubMedGoogle Scholar
  64. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarosik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pysek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. CrossRefPubMedGoogle Scholar
  65. Violle C, Nemergut DR, Pu Z, Jiang L (2011) Phylogenetic limiting similarity and competitive exclusion. Ecol Lett 14:782–787. CrossRefPubMedGoogle Scholar
  66. Vitousek PM, DAntonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478Google Scholar
  67. Wu ZT, Dijkstra P, Koch GW, Penuelas J, Hungate BA (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Change Biol 17:927–942. CrossRefGoogle Scholar
  68. Wu G-L, Liu Y, Tian F-P, Shi Z-H (2017) Legumes functional group promotes soil organic carbon and nitrogen storage by increasing plant diversity. Land Degrad Dev 28:1336–1344. CrossRefGoogle Scholar
  69. Zavaleta ES, Shaw MR, Chiariello NR, Mooney HA, Field CB (2003) Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc Natl Acad Sci USA 100:7650–7654. CrossRefPubMedGoogle Scholar
  70. Zuur A, Ieno E, Walker N, Saveliev A, Smith G (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  2. 2.Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.State Key Laboratory of Earth Surface Processes and Resource Ecology, Center for Human-Environment System Sustainability (CHESS)Beijing Normal UniversityBeijingChina
  5. 5.School of Resources and EnvironmentAnhui Agricultural UniversityHefeiChina
  6. 6.Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina

Personalised recommendations