Litter quality, dispersal and invasion drive earthworm community dynamics and forest soil development

Abstract

In temperate deciduous forests of eastern USA, most earthworm communities are dominated by invasive species. Their structure and functional group composition have critical impacts on ecological properties and processes. However, the factors determining their community structure are still poorly understood, and little is known regarding their dynamics during forest succession and the mechanisms leading to these changes. Earthworm communities are usually assumed to be stable and driven by vegetation. In contrast, the importance of dispersal and ecological drift is seldom acknowledged. By analyzing a 19-year dataset collected from forest stands in eastern USA, we demonstrated that on a decadal timescale, earthworm community dynamics are shaped by the interplay of selection, dispersal, and ecological drift. We highlighted that forests at different successional stages have distinct earthworm species and functional groups as a result of environmental filtering through leaf litter quality. Specifically, young forests are characterized by soil-feeding species that rely on relatively fresh soil organic matter derived from fast-decomposing litter, whereas old forests are characterized by those feeding on highly processed soil organic matter derived from slow-decomposing litter. In addition, year-to-year species gains and losses are primarily driven by dispersal from regional to local species pools, and by local extinction resulted from competition and ecological drift. We concluded that with continued dispersal of European species and the recent “second wave” of earthworm invasion by Asian species from the surrounding landscape, earthworms at the investigated forests are well-established, and will remain as the major drivers of soil development for the foreseeable future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anderson MJ (2001) A new method for non-parametric multicariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  2. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. https://doi.org/10.1111/j.1461-0248.2006.00926.x

    Article  PubMed  Google Scholar 

  3. Anderson MJ et al (2011) Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x

    Article  PubMed  Google Scholar 

  4. Bates D, Maechler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  5. Bayoumi BM (1978) Significance of the microhabitat on the distribution of oribatid mites in a hornbeam-oak mixed forest. Opuscula Zoologica (Budapest) 15:51–57

    Google Scholar 

  6. Bolker BM et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. https://doi.org/10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  7. Bozarth MA, Farrish KW, Damoff GA, VanKley J, Young JL (2016) Spatial distribution of earthworms in an east Texas forest ecosystem. Appl Soil Ecol 104:91–103. https://doi.org/10.1016/j.apsoil.2016.03.005

    Article  Google Scholar 

  8. Briones MJI, Schmidt O (2017) Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob Change Biol 23:4396–4419. https://doi.org/10.1111/gcb.13744

    Article  Google Scholar 

  9. Brush GS, Lenk C, Smith J (1980) The natural forests of Maryland: an explanation of the vegetation map of Maryland. Ecol Monogr 50:77–92. https://doi.org/10.2307/2937247

    Article  Google Scholar 

  10. Chang CH, Snyder BA, Szlavecz K (2016a) Asian pheretimoid earthworms in North America north of Mexico: an illustrated key to the genera Amynthas, Metaphire, Pithemera, and Polypheretima (Clitellata: Megascolecidae). Zootaxa 4179:495–529. https://doi.org/10.11646/zootaxa.4179.3.7

    Article  PubMed  Google Scholar 

  11. Chang CH, Szlavecz K, Buyer JS (2016b) Species-specific effects of earthworms on microbial communities and the fate of litter-derived carbon. Soil Biol Biochem 100:129–139. https://doi.org/10.1016/j.soilbio.2016.06.004

    Article  CAS  Google Scholar 

  12. Chang CH, Szlavecz K, Filley T, Buyer JS, Bernard MJ, Pitz SL (2016c) Belowground competition among invading detritivores. Ecology 97:160–170. https://doi.org/10.1890/15-0551.1

    Article  PubMed  Google Scholar 

  13. Chang CH, Szlavecz K, Buyer JS (2017) Amynthas agrestis invasion increases microbial biomass in Mid-Atlantic deciduous forests. Soil Biol Biochem 114:189–199. https://doi.org/10.1016/j.soilbio.2017.07.018

    Article  CAS  Google Scholar 

  14. Chang C-H, Johnston M, Görres J, Davalos A, McHugh D, Szlavecz K (2018) Co-invasion of three Asian earthworms, Metaphire hilgendorfi, Amynthas agrestis and Amynthas tokioensis in the USA. Biol Invasions. https://doi.org/10.1007/s10530-017-1607-x

    Article  Google Scholar 

  15. Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B Biol Sci 366:2351–2363. https://doi.org/10.1098/rstb.2011.0063

    Article  Google Scholar 

  16. Cleveland CC et al (2014) Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–294. https://doi.org/10.1007/s00442-013-2758-9

    Article  PubMed  Google Scholar 

  17. Cote B, Fyles JW (1994) Nutrient concentration and acid-base status of leaf litter of tree species characteristic of the hardwood forest of southern Quebec. Can J For Res Revue Canadienne De Recherche Forestiere 24:192–196. https://doi.org/10.1139/x94-027

    Article  CAS  Google Scholar 

  18. Craven D et al (2017) The unseen invaders: introduced earthworms as drivers of change in plant communities in North American forests (a meta-analysis). Glob Change Biol 23:1065–1074. https://doi.org/10.1111/gcb.13446

    Article  Google Scholar 

  19. Crow SE et al (2009) Earthworms, stand age, and species composition interact to influence particulate organic matter chemistry during forest succession. Biogeochemistry 92:61–82. https://doi.org/10.1007/s10533-008-9260-1

    Article  Google Scholar 

  20. Crumsey JM, Le Moine JM, Vogel CS, Nadelhoffer KJ (2014) Historical patterns of exotic earthworm distributions inform contemporary associations with soil physical and chemical factors across a northern temperate forest. Soil Biol Biochem 68:503–514. https://doi.org/10.1016/j.soilbio.2013.10.029

    Article  CAS  Google Scholar 

  21. Csuzdi C, Zicsi A (2003) Earthworm of Hungary. Hungarian Natural History Museum, Budapest

    Google Scholar 

  22. Csuzdi C, Chang C-H, Pavlícek T, Szederjesi T, Esopi D, Szlávecz K (2017) Molecular phylogeny and systematics of native North American lumbricid earthworms (Clitellata: Megadrili). PLoS ONE 12(8):e0181504. https://doi.org/10.1371/journal.pone.0181504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. de Schrijver A et al (2012) Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Glob Change Biol 18:1127–1140. https://doi.org/10.1111/j.1365-2486.2011.02572.x

    Article  Google Scholar 

  24. De Wandeler H et al (2016) Drivers of earthworm incidence and abundance across European forests. Soil Biol Biochem 99:167–178. https://doi.org/10.1016/j.soilbio.2016.05.003

    Article  CAS  Google Scholar 

  25. Decaens T, Dutoit T, Alard D (1997) Earthworm community characteristics during afforestation of abandoned chalk grasslands (Upper Normandy, France). Eur J Soil Biol 33:1–11

    Google Scholar 

  26. Decaens T, Margerie P, Aubert M, Hedde M, Bureau F (2008) Assembly rules within earthworm communities in North-Western France—a regional analysis. Appl Soil Ecol 39:321–335. https://doi.org/10.1016/j.apsoil.2008.01.007

    Article  Google Scholar 

  27. Dobson A, Blossey B (2015) Earthworm invasion, white-tailed deer and seedling establishment in deciduous forests of north-eastern North America. J Ecol 103:153–164. https://doi.org/10.1111/1365-2745.12350

    Article  Google Scholar 

  28. Dózsa-Farkas K (1978) Ecological importance of microhabitats in the distribution of some enchytraeid species. Pedobiologia 18:366–372

    Google Scholar 

  29. Dunger W, Voigtlander K (2009) Soil fauna (Lumbricidae, Collembola, Diplopoda and Chilopoda) as indicators of soil eco-subsystem development in post-mining sites of eastern Germany—a review. Soil Org 81:1–51

    Google Scholar 

  30. Eggleton P, Inward K, Smith J, Jones DT, Sherlock E (2009) A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biol Biochem 41:1857–1865. https://doi.org/10.1016/j.soilbio.2009.06.007

    Article  CAS  Google Scholar 

  31. Eijsackers H (2011) Earthworms as colonizers of natural and cultivated soil environments. Appl Soil Ecol 50:1–13. https://doi.org/10.1016/j.apsoil.2011.07.008

    Article  Google Scholar 

  32. Eisenhauer N, Partsch S, Parkinson D, Scheu S (2007) Invasion of a deciduous forest by earthworms: changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biol Biochem 39:1099–1110. https://doi.org/10.1016/j.soilbio.2006.12.019

    Article  CAS  Google Scholar 

  33. Eisenhauer N et al (2009) Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biol Biochem 41:2430–2443. https://doi.org/10.1016/j.soilbio.2009.09.001

    Article  CAS  Google Scholar 

  34. Ernst G, Emmerling C (2009) Impact of five different tillage systems on soil organic carbon content and the density, biomass, and community composition of earthworms after a ten year period. Eur J Soil Biol 45:247–251. https://doi.org/10.1016/j.ejsobi.2009.02.002

    Article  CAS  Google Scholar 

  35. Fanin N, Fromin N, Bertrand I (2016) Functional breadth and home-field advantage generate functional differences among soil microbial decomposers. Ecology 97:1023–1037. https://doi.org/10.1890/15-1263.1

    PubMed  Article  Google Scholar 

  36. Ferlian O, Cesarz S, Marhan S, Scheu S (2014) Carbon food resources of earthworms of different ecological groups as indicated by 13C compound-specific stable isotope analysis. Soil Biol Biochem 77:22–30. https://doi.org/10.1016/j.soilbio.2014.06.002

    Article  CAS  Google Scholar 

  37. Filley TR et al (2008) Comparison of the chemical alteration trajectory of Liriodendron tulipifera L. leaf litter among forests with different earthworm abundance. J Geophys Res Biogeosci. https://doi.org/10.1029/2007jg000542

    Article  Google Scholar 

  38. Frouz J et al (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol 44:109–121. https://doi.org/10.1016/j.ejsobi.2007.09.002

    Article  Google Scholar 

  39. Görres JH, Melnichuk RDS, Belliturk K (2014) Mortality pattern relative to size variation within Amynthas agrestis (Goto & Hatai 1899) (Oligochaeta: Megascolecidae) populations in the Champlain Valley of Vermont, USA. Megadrilogica 16:9–14

    Google Scholar 

  40. Greiner HG, Kashian DR, Tiegs SD (2012) Impacts of invasive Asian (Amynthas hilgendorfi) and European (Lumbricus rubellus) earthworms in a North American temperate deciduous forest. Biol Invasions 14:2017–2027. https://doi.org/10.1007/s10530-012-0208-y

    Article  Google Scholar 

  41. Groffman PM et al (2015) Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biol Biochem 87:51–58. https://doi.org/10.1016/j.soilbio.2015.03.025

    Article  CAS  Google Scholar 

  42. Hale CM, Frelich LE, Reich PB (2005) Exotic European earthworm invasion dynamics in northern hardwood forests of Minnesota, USA. Ecol Appl 15:848–860. https://doi.org/10.1890/03-5345

    Article  Google Scholar 

  43. Hale CM, Frelich LE, Reich PB (2006) Changes in hardwood forest understory plant communities in response to European earthworm invasions. Ecology 87:1637–1649. https://doi.org/10.1890/0012-9658(2006)87[1637:cihfup]2.0.co;2

    Article  PubMed  Google Scholar 

  44. Higman D (1968) An ecologically annotated checklist of the vascular flora at the Chesapeake Bay Center for field biology, with keys. Smithsonian Institution, Washington, DC

    Google Scholar 

  45. Hobbie SE et al (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–2297. https://doi.org/10.1890/0012-9658(2006)87[2288:tseoda]2.0.co;2

    Article  PubMed  Google Scholar 

  46. Holdsworth AR, Frelich LE, Reich PB (2012) Leaf litter disappearance in earthworm-invaded northern hardwood forests: role of tree species and the chemistry and diversity of litter. Ecosystems 15:913–926. https://doi.org/10.1007/s10021-012-9554-y

    Article  CAS  Google Scholar 

  47. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363

    Article  PubMed  Google Scholar 

  48. Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecol Lett 11:419–431. https://doi.org/10.1111/j.1461-0248.2008.01173.x

    Article  PubMed  Google Scholar 

  49. Laushman KM, Hotchkiss SC, Herrick BM (2018) Tracking an invasion: community changes in hardwood forests following the arrival of Amynthas agrestis and Amynthas tokioensis in Wisconsin. Biol Invasions. https://doi.org/10.1007/s10530-017-1653-4

    Article  Google Scholar 

  50. Loss SR, Blair RB (2011) Reduced density and nest survival of ground-nesting songbirds relative to earthworm invasions in northern hardwood forests. Conserv Biol 25:983–992. https://doi.org/10.1111/j.1523-1739.2011.01719.x

    Article  PubMed  Google Scholar 

  51. Loss SR, Niemi GJ, Blair RB (2012) Invasions of non-native earthworms related to population declines of ground-nesting songbirds across a regional extent in northern hardwood forests of North America. Landsc Ecol 27:683–696. https://doi.org/10.1007/s10980-012-9717-4

    Article  Google Scholar 

  52. Ma Y, Filley TR, Johnston CT, Crow SE, Szlavecz K, McCormick MK (2013) The combined controls of land use legacy and earthworm activity on soil organic matter chemistry and particle association during afforestation. Org Geochem 58:56–68. https://doi.org/10.1016/j.orggeochem.2013.02.010

    Article  CAS  Google Scholar 

  53. Ma Y, Filley TR, Szlavecz K, McCormick MK (2014) Controls on wood and leaf litter incorporation into soil fractions in forests at different successional stages. Soil Biol Biochem 69:212–222. https://doi.org/10.1016/j.soilbio.2013.10.043

    Article  CAS  Google Scholar 

  54. Maerz JC, Nuzzo VA, Blossey B (2009) Declines in woodland salamander abundance associated with non-native earthworm and plant invasions. Conserv Biol 23:975–981. https://doi.org/10.1111/j.1523-1739.2009.01167.x

    Article  PubMed  Google Scholar 

  55. Mariotte P, Le Bayon RC, Eisenhauer N, Guenat C, Buttler A (2016) Subordinate plant species moderate drought effects on earthworm communities in grasslands. Soil Biol Biochem 96:119–127. https://doi.org/10.1016/j.soilbio.2016.01.020

    Article  CAS  Google Scholar 

  56. McMahon SM, Parker GG, Miller DR (2010) Evidence for a recent increase in forest growth. Proc Natl Acad Sci USA 107:3611–3615. https://doi.org/10.1073/pnas.0912376107

    Article  PubMed  Google Scholar 

  57. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. https://doi.org/10.2307/1936780

    Article  CAS  Google Scholar 

  58. Melody C, Schmidt O (2012) Northward range extension of an endemic soil decomposer with a distinct trophic position. Biol Lett 8:956–959. https://doi.org/10.1098/rsbl.2012.0537

    Article  PubMed  PubMed Central  Google Scholar 

  59. Moorhead D, Lashermes G, Recous S, Bertrand I (2014) Interacting microbe and litter quality controls on litter decomposition: a modeling analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0108769

    Article  PubMed  PubMed Central  Google Scholar 

  60. Moretti M et al (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567. https://doi.org/10.1111/1365-2435.12776

    Article  Google Scholar 

  61. Muys B, Lust N, Cranval PH (1992) Effects of grassland afforestation with different tree species on earthworm communities, litter decomposition and nutrient status. Soil Biol Biochem 24:1459–1466

    Article  Google Scholar 

  62. Neilson R, Boag B, Smith M (2000) Earthworm delta C-13 and delta N-15 analyses suggest that putative functional classifications of earthworms are site-specific and may also indicate habitat diversity. Soil Biol Biochem 32:1053–1061. https://doi.org/10.1016/s0038-0717(00)00013-4

    Article  CAS  Google Scholar 

  63. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) vegan: community ecology package. R package version 2.3-5. http://CRAN.R-project.org/package=vegan

  64. Pecl GT et al (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:1389. https://doi.org/10.1126/science.aai9214

    Article  CAS  Google Scholar 

  65. Pizl V (1992) Succession of earthworm populations in abandoned fields. Soil Biol Biochem 24:1623–1628. https://doi.org/10.1016/0038-0717(92)90160-y

    Article  Google Scholar 

  66. Pollierer MM et al (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736. https://doi.org/10.1111/j.1461-0248.2007.01064.x

    Article  PubMed  Google Scholar 

  67. Ponge JF et al (1999) Interactions between earthworms, litter and trees in an old-growth beech forest. Biol Fertil Soils 29:360–370. https://doi.org/10.1007/s003740050566

    Article  Google Scholar 

  68. Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149. https://doi.org/10.1007/s10533-010-9439-0

    Article  CAS  Google Scholar 

  69. Qiu JX, Turner MG (2017) Effects of non-native Asian earthworm invasion on temperate forest and prairie soils in the Midwestern US. Biol Invasions 19:73–88. https://doi.org/10.1007/s10530-016-1264-5

    Article  Google Scholar 

  70. Ransom TS (2011) Earthworms, as ecosystem engineers, influence multiple aspects of a salamander’s ecology. Oecologia 165:745–754. https://doi.org/10.1007/s00442-010-1775-1

    Article  PubMed  Google Scholar 

  71. Raw F (1959) Estimating earthworm populations by using formalin. Nature 184:1661–1662

    Article  Google Scholar 

  72. Reich PB et al (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8:811–818. https://doi.org/10.1111/j.1461-0248.2005.00779.x

    Article  Google Scholar 

  73. Resner K et al (2015) Invasive earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern hardwood forest. Ecosystems 18:89–102. https://doi.org/10.1007/s10021-014-9814-0

    Article  CAS  Google Scholar 

  74. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  75. Schelfhout S et al (2017) Tree species identity shapes earthworm communities. Forests. https://doi.org/10.3390/f8030085

    Article  Google Scholar 

  76. Scheu S (1992) Changes in the lumbricid coenosis during secondary succession from a wheat field to a beechwood on limestone. Soil Biol Biochem 24:1641–1646

    Article  Google Scholar 

  77. Scheu S, Falca M (2000) The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123:285–296

    Article  PubMed  CAS  Google Scholar 

  78. Schmidt O et al (2004) Duel stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food sources. Pedobiologia 48:171–180. https://doi.org/10.1016/j.pedobi.2003.12.003

    Article  Google Scholar 

  79. Schwarz B et al (2015) Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. Eur J Soil Biol 67:17–26. https://doi.org/10.1016/j.ejsobi.2015.01.001

    Article  Google Scholar 

  80. Simmons W, Davalos A, Blossey B (2015) Forest successional history and earthworm legacy affect earthworm survival and performance. Pedobiologia 58:153–164. https://doi.org/10.1016/j.pedobi.2015.05.001

    Article  Google Scholar 

  81. Skaug H, Fournier D, Bolker B, Magnusson A, Nielsen A (2016) Generalized linear mixed models using ‘AD Model Builder’. R package version 0.8.3.3

  82. Snyder BA, Callaham MA Jr, Hendrix PF (2011) Spatial variability of an invasive earthworm (Amynthas agrestis) population and potential impacts on soil characteristics and millipedes in the Great Smoky Mountains National Park, USA. Biol Invasions 13:349–358. https://doi.org/10.1007/s10530-010-9826-4

    Article  Google Scholar 

  83. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  84. Szlavecz K, Csuzdi C (2007) Land use change affects earthworm communities in Eastern Maryland, USA. Eur J Soil Biol 43:S79–S85. https://doi.org/10.1016/j.ejsobi.2007.08.008

    Article  Google Scholar 

  85. Szlavecz K et al (2011) Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests. Biol Invasions 13:1165–1182. https://doi.org/10.1007/s10530-011-9959-0

    Article  Google Scholar 

  86. Trap J et al (2011) Does moder development along a pure beech (Fagus sylvatica L.) chronosequence result from changes in litter production or in decomposition rates? Soil Biol Biochem 43:1490–1497. https://doi.org/10.1016/j.soilbio.2011.03.025

    Article  CAS  Google Scholar 

  87. Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  88. Vellend M (2016) The theory of ecological communities. Princeton University Press, Princeton

    Google Scholar 

  89. Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736. https://doi.org/10.1111/j.1365-2745.2010.01664.x

    Article  Google Scholar 

  90. White DL, Haines BL, Boring LR (1988) Litter decomposition in southern Appalachian black locust and pine hardwood stands—litter quality and nitrogen dynamics. Can J For Res 18:54–63. https://doi.org/10.1139/x88-009

    Article  Google Scholar 

  91. Wilson-Kokes L, Skousen J (2014) Nutrient concentrations in tree leaves on brown and gray reclaimed mine soils in West Virginia. Sci Total Environ 481:418–424. https://doi.org/10.1016/j.scitotenv2014.02.015

    Article  PubMed  CAS  Google Scholar 

  92. Xia L, Szlavecz K, Swan CM, Burgess JL (2011) Inter- and intra-specific interactions of Lumbricus rubellus (Hoffmeister, 1843) and Octolasion lacteum (Orley, 1881) (Lumbricidae) and the implication for C cycling. Soil Biol Biochem 43:1584–1590. https://doi.org/10.1016/j.soilbio.2011.04.009

    Article  CAS  Google Scholar 

  93. Yeates GW (1981) Soil nematode populations depressed in the presence of earthworms. Pedobiologia 22:191–195

    Google Scholar 

  94. Yesilonis I, Szlavecz K, Pouyat R, Whigham D, Xia L (2016) Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US. For Ecol Manag 370:83–92. https://doi.org/10.1016/j.foreco.2016.03.046

    Article  Google Scholar 

  95. Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. https://doi.org/10.1093/jpe/rtn002

    Article  Google Scholar 

  96. Zicsi A, Szlavecz K, Csuzdi C (2011) Leaf litter acceptance and cast deposition by peregrine and endemic European lumbricids (Oligochaeta: Lumbricidae). Pedobiologia 54:S145–S152. https://doi.org/10.1016/j.pedobi.2011.09.004

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by grants from United States Department of Agriculture (CSREES NRI 2007-35320-18375), and National Science Foundation of USA (EAR-0748442 and EAGER NEON 1550795). We thank Anson Hines for permission to conduct research at the Smithsonian Environmental Research Center, Pat Neale for providing the precipitation data, and Xu Yang for organizing the precipitation data. Jay O’Neil, Jia-Hsing Wu, several SERC volunteers and undergraduate students helped in the field. Dennis Whigham and two anonymous reviewers provided helpful comments on an earlier version of this manuscript.

Author information

Affiliations

Authors

Contributions

KS, CHC, MJB and CsCs conceived the ideas and designed the methodology; KS, CHC, MJB, SLP, LX, YM, TF and conducted fieldwork; CHC analyzed the data; KS and CHC collaboratively wrote the manuscript; comments by the other authors improved the manuscript.

Corresponding author

Correspondence to Chih-Han Chang.

Additional information

Communicated by Stefan Scheu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 505 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szlavecz, K., Chang, CH., Bernard, M.J. et al. Litter quality, dispersal and invasion drive earthworm community dynamics and forest soil development. Oecologia 188, 237–250 (2018). https://doi.org/10.1007/s00442-018-4205-4

Download citation

Keywords

  • Functional group
  • Long term
  • Amynthas agrestis
  • Metaphire hilgendorfi
  • Endogeic