, Volume 187, Issue 4, pp 1095–1105 | Cite as

Stable isotope ecology of black rhinos (Diceros bicornis) in Kenya

  • Thure E. CerlingEmail author
  • Samuel A. Andanje
  • Francis Gakuya
  • John M. Kariuki
  • Linus Kariuki
  • Jackson W. Kingoo
  • Cedric Khayale
  • Isaac Lekolool
  • Anthony N. Macharia
  • Christopher R. Anderson
  • Diego P. Fernandez
  • Lihai Hu
  • Shawn J. Thomas
Special Topic


Stable isotope and elemental ratios in hair are influenced by the environment, including both climate and geology. Stable carbon isotopes can be used to give estimates of the C4/CAM fraction of diets of herbivorous mammals; stable nitrogen isotopes are related to the local water deficit; strontium isotopes are determined by the local geology. We studied hair from rhinos in Kenya to determine spatial patterns in δ13C, δ15N, and 87Sr/86Sr ratios. The samples of rhino hair were collected during Kenya Wildlife Service translocation or veterinary activities. δ13C values showed diets dominated by C3 foods, but in some regions the diet, at least seasonally, contained significant quantities (i.e., > ca. 20%) of C4/CAM foods. δ15N values were related to water deficit, with higher δ15N values in regions with high water deficit. 87Sr/86Sr isotope ratios were found to be related to the local geological substrate suggesting that 87Sr/86Sr isotope ratios are provisionally useful for determining the origins of illegal wildlife materials in Kenya and elsewhere in Africa.


Isotope ecology East Africa Diceros Conservation National parks Diet Rhinoceros 



We thank the members of Kenya Wildlife Service for assistance in collecting rhino hair samples, Truman Young and Meave Leakey for collecting plant samples, and Nicholas Georgiadis for water and temperature data from the Laikipia region. We thank the government of Kenya for permission to do this work. We thank IsoForensics for making the Neptune MC-ICP-MS available for this study. This work was done under CITES permits US831854, US053837/9, US159997/9, and US08996A/9. Dr. Samuel Andanje died on 4 May 2015 while this manuscript was in the initial stages of preparation; the living authors are grateful to him for his work on this project.

Author contribution statement

TEC and SAA conceived and designed the experiments. TEC, SAA, FG, JMK, LK, JWK, CK, IL, and ANM carried out the field work and laboratory analyses were performed by ANM, CRA, DPF, LH, and SJT. TEC, SAA, and DPF analyzed the data. TEC and SAA wrote the manuscript.

Supplementary material

442_2018_4185_MOESM1_ESM.xlsx (45 kb)
Supplementary material 1 (XLSX 44 kb) Appendix SI 1. Data on individual histories of rhinos sampled in this study
442_2018_4185_MOESM2_ESM.xlsx (114 kb)
Supplementary material 2 (XLSX 114 kb) Appendix SI II. δ13C and δ15N values of sequential hair samples for 7 rhinos from Kenya; diet input δ13C and δ15N values, and estimated fraction of C4/CAM in diet calculated as described in text
442_2018_4185_MOESM3_ESM.xlsx (48 kb)
Supplementary material 3 (XLSX 48 kb) Appendix SI III. δ13C, δ15N, and C/N ratios of plants collected from the regions of study from 1997 to 2007
442_2018_4185_MOESM4_ESM.docx (92 kb)
Supplementary material 4 (DOCX 91 kb) Table SI 1. δ13C, δ15N, and 87Sr/86Sr of bulk hair samples from black rhinos in this study
442_2018_4185_MOESM5_ESM.docx (46 kb)
Supplementary material 5 (DOCX 45 kb) Table SI 2. Average δ13C and δ15N values for plants from Laikipia, Nairobi, and Tsavo regions collected between 1997 and 2007
442_2018_4185_MOESM6_ESM.docx (99 kb)
Supplementary material 6 (DOCX 99 kb) Table SI 3. δ13C and δ18O of teeth from rhinos (Diceros bicornis), elephant (Loxodonta africana), Burchell’s zebra (Equus burchelli), and giraffe (Giraffa camelopardalis) from Tsavo East National Park, all from approximately 1970. δ13C1750 is the δ13C value corrected to 1750 due the change in the δ13C of the atmosphere due to fossil fuel burning (NOAA, 2017); percent C4 is calculated assuming the average δ13C values for equids and giraffe represent pure C4 and pure C3 diets, respectively and assuming all taxa have the same isotope enrichment factor for diet to enamel (see Cerling et al., 1999)


  1. Amin R, Okita-Ouma B, Adcock K, Emslie RH, Mulama M, Pearce-Kelly P (2006) An integrated management strategy for the conservation of Eastern black rhinoceros Diceros bicornis michaeli in Kenya. Int Zoo Yearb 40(1):118–129CrossRefGoogle Scholar
  2. Ayliffe LK, Cerling TE, Robinson T, West AG, Sponheimer M, Passey BH, Hammer J, Roeder B, Dearing MD, Ehleringer JR (2004) Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139:11–22CrossRefPubMedGoogle Scholar
  3. Birkett A (2002) The impact of giraffe, rhino and elephant on the habitat of a black rhino sanctuary in Kenya. Afr J Ecol 40:276–282CrossRefGoogle Scholar
  4. Blum JD, Taliaferro EH, Holmes RT (2001) Determining the sources of calcium for migratory songbirds using stable strontium isotopes. Oecologia 126:569–574CrossRefPubMedGoogle Scholar
  5. Blumenthal SA, Levin NE, Brown FH, Brugal J-P, Chritz KL, Harris JM, Jehle GE, Cerling TE (2017) Aridity and hominin environments. Proc Natl Acad Sci 114:7331–7336CrossRefPubMedGoogle Scholar
  6. Brennan SR, Fernandez DP, Zimmerman CE, Cerling TE, Brown RJ, Wooller MJ (2015a) Strontium isotopes in otoliths of a non-migratory fish (slimy sculpin): implications for provenance studies. Geochim Cosmochim Acta 149:32–45CrossRefGoogle Scholar
  7. Brennan SR, Zimmerman CE, Fernandez DP, Cerling TE, McPhee MV, Wooller MJ (2015b) Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon. Sci Adv 1(4):e1400124. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buk KG, Knight MH (2010) Seasonal diet preferences of black rhinoceros in three arid South African National Parks. Afr J Ecol 48(4):1064–1075CrossRefGoogle Scholar
  9. Cerling TE, Harris JM (1999) Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347–363CrossRefPubMedGoogle Scholar
  10. Cerling TE, Harris JM, Passey BH (2003) Dietary preferences of East African Bovidae based on stable isotope analysis. J Mamm 84:456–471CrossRefGoogle Scholar
  11. Cerling TE, Passey BH, Ayliffe LK, Cook CS, Ehleringer JR, Harris JM, Dhidha MB, Kasiki SM (2004) Orphans’ tales: seasonally dietary changes in elephants from Tsavo National Park, Kenya. Palaeogeogr Palaeoclimatol Palaeoecol 206:367–376CrossRefGoogle Scholar
  12. Cerling TE, Wittemyer G, Rasmussen HB, Vollrath F, Cerling CE, Robinson TJ, Douglas-Hamilton I (2006) Stable isotopes in elephant hair documents migration patterns and diet changes. Proc Natl Acad Sci 103:371–373CrossRefPubMedGoogle Scholar
  13. Cerling TE, Ayliffe LK, Dearing MD, Ehleringer JR, Passey BH, Podlesak DW, Torregrossa A-M, West AG (2007a) Determining biological tissue turnover using stable isotopes: the reaction progress variable. Oecologia 151:175–189CrossRefPubMedGoogle Scholar
  14. Cerling TE, Omondi P, Macharia AN (2007b) Diets of Kenyan elephants from stable isotopes and the origin of confiscated ivory in Kenya. J Afr Ecol 45:614–623CrossRefGoogle Scholar
  15. Cerling TE, Wittemyer G, Ehleringer JR, Remien CH, Douglas-Hamilton I (2009) History of Animals using Isotope Records (HAIR): a 6-year dietary history of one family of African elephants. Proc Natl Acad Sci 106:8093–8100CrossRefPubMedGoogle Scholar
  16. Coutu AN, Lee-Thorp J, Collins MJ, Lane PJ (2016) Mapping the elephants of the 19th century East African ivory trade with a multi-isotope approach. PLoS One 11(10):e0163606CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dharani N, Kinyamario JI, Wagacha PW, Rodrigues AJ (2009) Browsing impact of large herbivores on Acacia xanthophloea Benth in Lake Nakuru National Park, Kenya. Afr J Ecol 47:184–191CrossRefGoogle Scholar
  18. Emslie RH (2013) African rhinoceroses—latest trends in rhino numbers and poaching. CITES—CoP16 Inf. 51. An update to Doc 54-2-Annexe 2 from the IUCN Species Survival Commission’s (IUCN/SSC) African Rhino Specialist Group to the CITES Secretariat pursuant to Resolution Conf. 9.14 (Rev. CoP15), pp 54-2Google Scholar
  19. Ganqa NM, Scogings PF, Raats JG (2005) Diet selection and forage factors affecting woody plant selection by black rhinoceros in the Great Fish River Reserve, South Africa. S Afr J Wildl Res 35:77–83Google Scholar
  20. Goddard J (1970) Food preferences of black rhinoceros in the Tsavo National Park. Afr J Ecol 8:145–161CrossRefGoogle Scholar
  21. Graustein WC, Armstrong RL (1983) The use of strontium-87/strontium-86 ratios to measure atmospheric transport into forested watersheds. Science 219:289–292CrossRefPubMedGoogle Scholar
  22. Hoppe KA, Koch PL, Carlson RW, Webb SD (1999) Tracking mammoths and mastodons: reconstruction of migratory behavior using strontium isotope ratios. Geology 27:439–442CrossRefGoogle Scholar
  23. Kennedy BP, Folt CL, Blum JD, Chamberlain CP (1997) Natural isotope markers in salmon. Nature 387:766–767CrossRefGoogle Scholar
  24. Kennedy BP, Blum JD, Folt CL, Nislow KH (2000) Using natural strontium isotopic signatures as fish markers: methodology and application. Can J Fish Aquat Sci 57:2280–2292CrossRefGoogle Scholar
  25. Kenya National Atlas (1962) Geological map of Kenya. Survey of Kenya. Nairobi, Kenya. 1 sheetGoogle Scholar
  26. Koch PL, Heisinger J, Moss C, Carlson RW, Fogel ML, Behrensmeyer AK (1995) Isotopic tracking of change in diet and habitat use in African elephants. Science 267:1340–1343CrossRefPubMedGoogle Scholar
  27. Lieverloo RJ, Schulling BF, de Boer WF, Lent PC, de Jong CB, Brown D, Prins HHT (2009) A comparison of faecal analysis with backtracking to determine the diet composition and species preference of the black rhinoceros (Diceros bicornis minor). Eur J Wildl Res 55:505–515CrossRefGoogle Scholar
  28. Mackey GN, Fernandez DP (2011) American Geophysical Union Fall Meeting, San Francisco, CA, USAGoogle Scholar
  29. Muya SM, Oguge NO (2000) Effects of browse availability and quality on black rhino (Diceros bicornis michaeli Groves 1967) diet in Nairobi National Park, Kenya. Afr J Ecol 38:62–71CrossRefGoogle Scholar
  30. Ngene S, Bitok E, Mukeka J, Okita-Ouma B, Gakuya F, Omondi P, Kimitei K, Watol Y, Kimani J (2011) Census and ear-notching of black rhinoceros (Diceros bicornis michaeli) in Tsavo East National Park, Kenya. Pachyderm 49:61–69Google Scholar
  31. NOAA (2017) Carbon-13/carbon-12 ratios in carbon dioxide. Downloaded on 11 March 2017
  32. Okita-Ouma B, Mijele D, Amin R, Gakuya F, Ndeereh D, Lekolool I, Omondi P, Woodley D, Litoroh M, Bakari J, Kock R (2008) Minimizing competition by removing elephants from a degraded Ngulia rhino sanctuary, Kenya. Pachyderm 44:80–87Google Scholar
  33. Okita-Ouma B, Amin R, Van Langevelde F, Leader-Williams N (2010) Density dependence and population dynamics of black rhinos (Diceros bicornis michaeli) in Kenya’s rhino sanctuaries. Afr J Ecol 48:791–799Google Scholar
  34. Oloo TW, Brett R, Young TP (1994) Seasonal variation in the feeding ecology of black rhinoceros (Diceros bicornis L.) in Laikipia, Kenya. Afr J Ecol 32:142–157CrossRefGoogle Scholar
  35. Passey BH, Cerling TE (2002) Tooth enamel mineralization in ungulates: implications for recovering a primary isotopic time-series. Geochim Cosmochim Acta 18:3225–3234CrossRefGoogle Scholar
  36. Patton F, Jones M (2007) Determining minimum population size and demographics of black rhinos in the Salient of Aberdare National Park, Kenya. Pachyderm 43:63–72Google Scholar
  37. Patton F, Campbell P, Parfet E (2007) Establishing a monitoring system for black rhinos in the Solio Game Reserve, central Kenya. Pachyderm 43:87–95Google Scholar
  38. Patton F, Campbell P, Parfet E (2008) Biological management of the high density black rhino population in Solio Game Reserve, central Kenya. Pachyderm 44:72–79Google Scholar
  39. Pienaar DJ, Hall-Martin AJ, Hitchins PM (1991) Horn growth rates of free-ranging white and black rhinoceros. Koedoe 34:97–105Google Scholar
  40. Quade J, Chivas AR, McCulloch MT (1995) Strontium and carbon isotope tracers and the origins of soil carbonate in South Australia and Victoria. Palaeogeogr Palaeoclimatol Palaeoecol 113:103–117CrossRefGoogle Scholar
  41. Quennel AM (1959) Geological map of Tanganyika. Geological Survey Department. Dodoma, Tanganyika (1 sheet)Google Scholar
  42. Spinage C (1994) Elephants. T. & A.D. Prosser, LondonGoogle Scholar
  43. Sponheimer M, Lee-Thorp JA, DeRuitter DJ, Smith JM, van der Merwe NJ, Reed K, Grant CC, Ayliffe LK, Robinson TF, Heidelberger C, Marcus W (2003) Diets of the Southern African bovidae: stable isotope evidence. J Mamm 8:471–479CrossRefGoogle Scholar
  44. Tipple BJ, Chau T, Chesson LA, Fernandez DP, Ehleringer JR (2013) Isolation of strontium pools and isotope ratios in modern human hair. Anal Chim Acta 798:64–73CrossRefPubMedGoogle Scholar
  45. van der Merwe NJ, Lee-Thorp JA, Bell RHV (1988) Carbon isotopes as indicators of elephant diets and African environments. Afr J Ecol 26:163–172CrossRefGoogle Scholar
  46. van der Merwe NJ, Lee-Thorp JA, Thackeray JF, Hall-Martin A, Kruger FJ, Coetzee H, Bell RHV, Lindeque M (1990) Source area determination of elephant ivory by isotopic analysis. Nature 346:744–746CrossRefGoogle Scholar
  47. Vitousek PM, Kennedy MJ, Derry LA, Chadwick OA (1999) Weathering versus atmospheric sources of strontium in ecosystems on young volcanic soils. Oecologia 121:255–259CrossRefPubMedGoogle Scholar
  48. Vogel JC, Eglington B, Auret JM (1990) Isotope fingerprints in elephant bone and ivory. Nature 346:747–749CrossRefGoogle Scholar
  49. Walpole MJ (2002) Factors affecting black rhino monitoring in Masai Mara National Reserve, Kenya. Afr J Ecol 40:18–25CrossRefGoogle Scholar
  50. Walpole MJ, Morgan-Davies M, Milledge S, Bett P, Leader-Williams N (2001) Population dynamics and future conservation of a free-ranging black rhinoceros (Diceros bicornis) population in Kenya. Biol Conserv 99:237–243CrossRefGoogle Scholar
  51. West AG, Ayliffe LK, Cerling TE, Robinson TF, Karren B, Dearing MD, Ehleringer JR (2004) Short-term diet changes revealed using stable carbon isotopes in horse tail-hair. Funct Ecol 18:616–624CrossRefGoogle Scholar
  52. Western D (1982) Patterns of depletion in a Kenya rhino population and the conservation implications. Biol Conserv 24:147–156CrossRefGoogle Scholar
  53. Wittemyer G, Cerling TE, Douglas-Hamilton I (2009) Establishing chronologies from isotopic profiles in serially collected animal tissues: an example using tail hairs from African elephants. Chem Geol 267:3–11CrossRefGoogle Scholar
  54. Yeakel JD, Patterson BD, Fox-Dobbs K, Okumura MM, Cerling TE, Moore JW, Koch PL, Dominy NJ (2009) Cooperation and individuality among man-eating lions. Proc Natl Acad Sci 106:19040–19043CrossRefPubMedGoogle Scholar
  55. Zazzo A, Harrison SM, Bahar B, Moloney AP, Monahan FJ, Scrimgeour CM, Schmidt O (2007) Experimental determination of dietary carbon turnover in bovine hair and hoof. Can J Zool 85:1239–1248. CrossRefGoogle Scholar
  56. Zazzo A, Mononey AP, Monahan FJ, Scrimgeour CM, Schmidt O (2008) Effect of age and food intake on dietary carbon turnover recorded in sheep wool. Rapid Commun Mass Spectrom 22:2937–2945CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thure E. Cerling
    • 1
    • 2
    Email author
  • Samuel A. Andanje
    • 3
  • Francis Gakuya
    • 3
  • John M. Kariuki
    • 3
  • Linus Kariuki
    • 3
  • Jackson W. Kingoo
    • 3
  • Cedric Khayale
    • 3
  • Isaac Lekolool
    • 3
  • Anthony N. Macharia
    • 4
  • Christopher R. Anderson
    • 1
  • Diego P. Fernandez
    • 1
  • Lihai Hu
    • 1
  • Shawn J. Thomas
    • 1
  1. 1.Department of Geology and GeophysicsUniversity of UtahSalt Lake CityUSA
  2. 2.Department of BiologyUniversity of UtahSalt Lake CityUSA
  3. 3.Kenya Wildlife ServiceNairobiKenya
  4. 4.Department of GeographyKenyatta UniversityNairobiKenya

Personalised recommendations