Skip to main content

Advertisement

Log in

Is thermal limitation the primary driver of elevational distributions? Not for montane rainforest ants in the Australian Wet Tropics

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Terrestrial ectotherms are likely to be especially sensitive to rising temperatures over coming decades. Thermal limits are used to measure climatic tolerances that potentially affect ectotherm distribution. While there is a strong relationship between the critical thermal maximum (CTmax) of insects and their latitudinal ranges, the nature of this relationship across elevation is less clear. Here we investigated the combined relationships between CTmax, elevation and ant body mass, given that CTmax can also be influenced by body mass, in the World Heritage-listed rainforests of the Australian Wet Tropics. We measured the CTmax and body mass of 20 ant species across an elevational gradient from 350 to 1000 m a.s.l. Community CTmax did not vary systematically with increasing elevation and there was no correlation between elevation and elevational ranges of species. However, body mass significantly decreased at higher elevations. Despite the negative correlation between CTmax and body mass at the community level, there was no significant difference in CTmax of different-sized ants within a species. These findings are not consistent with either the climatic variability hypothesis, Rapoport’s rule or Bergmann’s rule. Models indicated that elevation and body mass had limited influences on CTmax. Our results suggest that the distribution of most montane ants in the region is not strongly driven by thermal limitation, and climate change will likely impact ant species differently. This is likely to occur primarily through changes in rainfall via its effects on vegetation structure and therefore thermal microhabitats, rather than through direct temperature changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc Lond B Biol Sci 267:739–745

    Article  CAS  Google Scholar 

  • Andersen AN (1983) Species diversity and temporal distribution of ants in the semi-arid mallee region of northwestern Victoria. Aust J Ecol 8:127–137

    Article  Google Scholar 

  • Andersen AN (1995) A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. J Biogeogr 22:15–29

    Article  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Angilletta MJ Jr, Dunham AE (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat 162:332–342

    Article  Google Scholar 

  • Angilletta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509

    Article  Google Scholar 

  • Araújo M, Ferri-Yáñez F, Bozinovic F, Marquet P, Valladares F, Chown S (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219

    Article  Google Scholar 

  • Arnan X, Blüthgen N (2015) Using ecophysiological traits to predict climatic and activity niches: lethal temperature and water loss in Mediterranean ants: using physiology to predict niches. Glob Ecol Biogeogr 24:1454–1464. https://doi.org/10.1111/geb.12363

    Article  Google Scholar 

  • Arnan X, Blüthgen N, Molowny-Horas R, Retana J (2015) Thermal characterization of european ant communities along thermal gradients and its implications for community resilience to temperature variability. Front Ecol Evol 3:138

    Article  Google Scholar 

  • Atkinson D (1994) Temperature and organism size: a biological law for ectotherms? Adv Ecol Res 25:1

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version 1:1–23

    Google Scholar 

  • Baudier KM, Mudd AE, Erickson SC, O’Donnell S (2015) Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). J Anim Ecol 84:1322–1330. https://doi.org/10.1111/1365-2656.12388

    Article  PubMed  Google Scholar 

  • Bishop TR, Robertson MP, Rensburg BJ, Parr CL (2017) Coping with the cold: minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecol Entomol 42:105–114

    Article  Google Scholar 

  • Blomberg SP, Garland T Jr, Garland AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745. https://doi.org/10.1554/0014-3820(2003)057[0717:TFPSIC]2.0.CO;2

    Article  Google Scholar 

  • Bozinovic F, Calosi P, Spicer JI (2011) Physiological correlates of geographic range in animals. Annu Rev Ecol Evol Syst 42:155–179

    Article  Google Scholar 

  • Brehm G, Fiedler K (2004) Bergmann’s rule does not apply to geometrid moths along an elevational gradient in an Andean montane rain forest. Glob Ecol Biogeogr 13:7–14

    Article  Google Scholar 

  • Bruhl CA, Gunsalam G, Linsenmair KE (1998) Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. J Trop Ecol 14:285–297

    Article  Google Scholar 

  • Buckley LB, Hurlbert AH, Jetz W (2012) Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob Ecol Biogeogr 21:873–885

    Article  Google Scholar 

  • Bureau of Meteorology (2015) Climate data online, vol 2015. http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/. Accessed 12 Aug 2015

  • Cerdá X, Retana J, Manzaneda A (1998) The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia 117:404–412

    Article  Google Scholar 

  • Clusella-Trullas S, Blackburn TM, Chown SL (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177:738–751

    Article  Google Scholar 

  • Costion CM, Simpson L, Pert PL, Carlsen MM, Kress WJ, Crayn D (2015) Will tropical mountaintop plant species survive climate change? Identifying key knowledge gaps using species distribution modelling in Australia. Biol Conserv 191:322–330

    Article  Google Scholar 

  • Davidson DW, Cook SC, Snelling RR, Chua TH (2003) Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–972. https://doi.org/10.1126/science.1082074

    Article  CAS  PubMed  Google Scholar 

  • Deutsch CA et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672

    Article  CAS  Google Scholar 

  • Diamond S et al (2012) Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Glob Chang Biol 18:448–456. https://doi.org/10.1111/j.1365-2486.2011.02542.x

    Article  Google Scholar 

  • Dunn RR et al (2009) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol Lett 12:324–333. https://doi.org/10.1111/j.1461-0248.2009.01291.x

    Article  PubMed  Google Scholar 

  • Eweleit L, Reinhold K (2014) Body size and elevation: do Bergmann’s and Rensch’s rule apply in the polytypic bushcricket Poecilimon veluchianus? Ecol Entomol 39:133–136

    Article  Google Scholar 

  • Gaston KJ, Chown SL (1999) Elevation and climatic tolerance: a test using dung beetles. Oikos 86:584–590

    Article  Google Scholar 

  • Geraghty MJ, Dunn R, Sanders NJ (2007) Body size, colony size, and range size in ants (Hymenoptera: Formicidae): are patterns along elevational and latitudinal gradients consistent with Bergmann’s rule. Myrmecol News 10:51–58

    Google Scholar 

  • Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol 46:5–17. https://doi.org/10.1093/icb/icj003

    Article  PubMed  Google Scholar 

  • Griffiths HM et al (2017) Ants are the major agents of resource removal from tropical rainforests. J Anim Ecol 00:1–8. https://doi.org/10.1111/1365-2656.12728

    Article  Google Scholar 

  • Hilbert DW, Ostendorf B, Hopkins MS (2001) Sensitivity of tropical forests to climate change in the humid tropics of north Queensland. Austral Ecol 26:590–603. https://doi.org/10.1046/j.1442-9993.2001.01137.x

    Article  Google Scholar 

  • Hilbert DW (2008) The dynamic forest landscape of the Australian Wet Tropics: present, past and future. In: Stork N, Turton S (eds) Living in a dynamic tropical forest landscape. Blackwell Publishing, Oxford, pp 107–122

    Google Scholar 

  • Hoffmann AA, Chown SL, Clusella-Trullas S (2013) Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol 27:934–949

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard University Press, Cambridge

    Book  Google Scholar 

  • Huey RB, Pascual M (2009) Partial thermoregulatory compensation by a rapidly evolving invasive species along a latitudinal cline. Ecology 90:1715–1720. https://doi.org/10.1890/09-0097.1

    Article  PubMed  Google Scholar 

  • Huey RB, Stevenson R (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19:357–366

    Article  Google Scholar 

  • Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc Lond B Biol Sci 367:1665–1679

    Article  Google Scholar 

  • Kaspari M, Vargo EL (1995) Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am Nat 145:610–632

    Article  Google Scholar 

  • Kaspari M, Weiser MD (2000) Ant activity along moisture gradients in a neotropical forest. Biotropica 32:703–711

    Article  Google Scholar 

  • Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A (2015) Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob Chang Biol 21:1092–1102

    Article  Google Scholar 

  • Kaspari M, Clay NA, Lucas J, Revzen S, Kay A, Yanoviak SP (2016) Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants. Ecology 97:1038–1047. https://doi.org/10.1890/15-1225.1

    Article  PubMed  Google Scholar 

  • Kaufmann E, Maschwitz U (2006) Ant-gardens of tropical Asian rainforests. Die Naturwissenschaften 93:216–227. https://doi.org/10.1007/s00114-005-0081-y

    Article  CAS  PubMed  Google Scholar 

  • Kellermann V, Overgaard J, Hoffmann AA, Fløjgaard C, Svenning J-C, Loeschcke V (2012) Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc Natl Acad Sci 109:16228–16233

    Article  CAS  Google Scholar 

  • Kimura MT (2004) Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140:442–449. https://doi.org/10.1007/s00442-004-1605-4

    Article  PubMed  Google Scholar 

  • LaPolla JS, Brady SG, Shattuck SO (2011) Monograph of Nylanderia (Hymenoptera: Formicidae) of the world: an introduction to the systematics and biology of the genus. Zootaxa 3110:1–9

    Google Scholar 

  • Levy RA, Nufio CR (2015) Dispersal potential impacts size clines of grasshoppers across an elevation gradient. Oikos 124:610–619

    Article  Google Scholar 

  • Lovadi I, Cairns A, Congdon R (2012) A comparison of three protocols for sampling epiphytic bryophytes in tropical montane rainforest. Trop Bryol 34:93–98

    Google Scholar 

  • McJannet D, Wallace J, Fitch P, Disher M, Reddell P (2008) Hydrological processes in the tropical rainforests of Australia. In: Stork N, Turton S (eds) Living in a dynamic tropical forest landscape. Blackwell Publishing, Oxford, pp 197–209

    Google Scholar 

  • Meiri S, Dayan T (2003) On the validity of Bergmann’s rule. J Biogeogr 30:331–351. https://doi.org/10.1046/j.1365-2699.2003.00837.x

    Article  Google Scholar 

  • Moreau CS, Bell CD (2013) Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67:2240–2257. https://doi.org/10.1111/evo.12105

    Article  PubMed  Google Scholar 

  • Moretti M et al (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567

    Article  Google Scholar 

  • Nelson AS et al (2017) Day/night upper thermal limits differ within Ectatomma ruidum ant colonies. Insectes Soc. https://doi.org/10.1007/s00040-017-0585-4

    Article  Google Scholar 

  • Nowrouzi S, Andersen AN, Macfadyen S, Staunton KM, VanDerWal J, Robson SK (2016) Ant diversity and distribution along elevation gradients in the Australian wet tropics: the importance of seasonal moisture stability. PLoS One 11:e0153420

    Article  Google Scholar 

  • Oberg EW, Del Toro I, Pelini SL (2012) Characterization of the thermal tolerances of forest ants of New England. Insectes Soc 59:167–174. https://doi.org/10.1007/s00040-011-0201-y

    Article  Google Scholar 

  • Olalla-Tárraga MÁ, Rodríguez MÁ, Hawkins BA (2006) Broad-scale patterns of body size in squamate reptiles of Europe and North America. J Biogeogr 33:781–793. https://doi.org/10.1111/j.1365-2699.2006.01435.x

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  Google Scholar 

  • Parsons SA, Congdon RA (2008) Plant litter decomposition and nutrient cycling in north Queensland tropical rain-forest communities of differing successional status. J Trop Ecol 24:317–327

    Article  Google Scholar 

  • Payne NL, Smith JA (2017) An alternative explanation for global trends in thermal tolerance. Ecol Lett 20:70–77. https://doi.org/10.1111/ele.12707

    Article  PubMed  Google Scholar 

  • Pincebourde S, Woods HA, Fox C (2012) Climate uncertainty on leaf surfaces: the biophysics of leaf microclimates and their consequences for leaf-dwelling organisms. Funct Ecol 26:844–853. https://doi.org/10.1111/j.1365-2435.2012.02013.x

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 06 Apr 2015. ISBN:3-900051-07-0

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x

    Article  Google Scholar 

  • Rezende EL, Tejedo M, Santos M (2011) Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Funct Ecol 25:111–121

    Article  Google Scholar 

  • Ribeiro PL, Camacho A, Navas CA (2012) Considerations for assessing maximum critical temperatures in small ectothermic animals: insights from leaf-cutting ants. PLoS One 7:e32083

    Article  CAS  Google Scholar 

  • Sanders NJ (2002) Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography 25:25–32

    Article  Google Scholar 

  • Shoo L, Williams S, Hero J (2005) Climate warming and the rainforest birds of the Australian Wet Tropics: using abundance data as a sensitive predictor of change in total population size. Biol Conserv 125:335–343. https://doi.org/10.1016/j.biocon.2005.04.003

    Article  Google Scholar 

  • Spellerberg IF (1972) Temperature tolerances of southeast Australian reptiles examined in relation to reptile thermoregulatory behaviour and distribution. Oecologia 9:23–46

    Article  Google Scholar 

  • Staunton KM, Robson SKA, Burwell CJ, Reside AE, Williams SE (2014) Projected distributions and diversity of flightless ground beetles within the Australian Wet Tropics and their environmental correlates. PLoS One 9(2):1–16

    Article  Google Scholar 

  • Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911

    Article  CAS  Google Scholar 

  • Stratman R, Markow TA (1998) Resistance to thermal stress in desert Drosophila. Funct Ecol 12:965–970. https://doi.org/10.1046/j.1365-2435.1998.00270.x

    Article  Google Scholar 

  • Stuble KL, Pelini SL, Diamond SE, Fowler DA, Dunn RR, Sanders NJ (2013) Foraging by forest ants under experimental climatic warming: a test at two sites. Ecol Evol 3:482–491. https://doi.org/10.1002/ece3.473

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proc Biol Sci R Soc 278:1823–1830. https://doi.org/10.1098/rspb.2010.1295

    Article  Google Scholar 

  • Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Chang 2:686–690

    Article  Google Scholar 

  • Terblanche JS, Klok CJ, Krafsur ES, Chown SL (2006) Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. Am J Trop Med Hyg 74:786–794

    Article  Google Scholar 

  • Verble-Pearson RM, Gifford ME, Yanoviak SP (2015) Variation in thermal tolerance of North American ants. J Therm Biol 48:65–68

    Article  Google Scholar 

  • Vorhees AS, Gray EM, Bradley TJ (2013) Thermal resistance and performance correlate with climate in populations of a widespread mosquito. Physiol Biochem Zool 86:73–81

    Article  Google Scholar 

  • Wiescher PT, Pearce-Duvet JM, Feener DH (2012) Assembling an ant community: species functional traits reflect environmental filtering. Oecologia 169:1063–1074

    Article  Google Scholar 

  • Williams SE, Pearson RG (1997) Historical rainforest contractions, localized extinctions and patterns of vertebrate endemism in the rainforests of Australia’s wet tropics. Proc R Soc Lond B 264:709–716

    Article  CAS  Google Scholar 

  • Williams SE, Williams YM, VanDerWal J, Isaac JL, Shoo LP, Johnson CN (2009) Colloquium papers: ecological specialization and population size in a biodiversity hotspot: how rare species avoid extinction. Proc Natl Acad Sci 106:19737–19741. https://doi.org/10.1073/pnas.0901640106

    Article  PubMed  Google Scholar 

  • Wilson EO (1992) The diversity of life. Harvard University Press, Harvard

    Google Scholar 

Download references

Acknowledgements

Dr. Kyran Staunton provided valuable comments on the manuscript, which we are grateful for. SN was supported by a Ph.D. scholarship from the National Environmental Research Program of Australian Government (James Cook University).

Author information

Authors and Affiliations

Authors

Contributions

SN, ANA, SKAR conceived the ideas; SN collected the data; SN and TRB analysed the data; SN led the writing, with other authors also contributing.

Corresponding author

Correspondence to Somayeh Nowrouzi.

Additional information

Communicated by Konrad Fiedler.

Noteworthy findings in our study are contradictions between our results and climatic variability hypothesis, Rapoport’s rule or Bergmann’s rule, and adds to the uncertainty around this issue for ants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowrouzi, S., Andersen, A.N., Bishop, T.R. et al. Is thermal limitation the primary driver of elevational distributions? Not for montane rainforest ants in the Australian Wet Tropics. Oecologia 188, 333–342 (2018). https://doi.org/10.1007/s00442-018-4154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-018-4154-y

Keywords

Navigation