Changes in the bee fauna of a German botanical garden between 1997 and 2017, attributable to climate warming, not other parameters

Abstract

Botanical gardens represent artificial, but stable environments. With this premise, we analyzed the Munich Botanical Garden’s bee fauna in 1997/1999 and again in 2015/2017. The garden covers 20 ha, uses no bee-relevant insecticides, has a protected layout, and on three sides abuts protected areas. Outdoors, it cultivates some 10,871 species/subspecies, many suitable as pollen and nectar sources for bees. The first survey found 79 species, the second 106, or 55% of the 192 species recorded for Munich since 1990. A Jackknife estimate for the second survey suggests 115 expected species. Classifying bees according to their thermal preferences (warm habitats, cool habitats, broad preferences, or unknown) revealed that 15 warm-loving species were gained (newly found), two lost (no longer found), and 12 retained, but only one cool-loving species was gained, three lost, and none retained, which multinomial models show to be significant differences. Of the 62 retained species, 27 changed in abundance, with 18 less frequent and nine more frequent by 2017 than they had been in 1997/1999. Retention, gain, or loss were unconnected to pollen specialization and Red List status of bee species. Between 1997 and 2017, average temperatures in Munich have increased by 0.5 °C, and climate warming over the past century is the most plausible explanation for the directional increase in warm-loving and the decrease in cool-adapted species. These results highlight the potential of botanic gardens with their artificially diverse and near-pesticide-free floras as systems in which to investigate climate change per se as a possible factor in shifting insect diversity.

This is a preview of subscription content, log in to check access.

Fig. 1

Change history

  • 12 July 2018

    The same is included here.

References

  1. Amiet F, Krebs A (eds) (2014) Bienen Mitteleuropas: Gattungen, Lebensweise, Beobachtung. 2., korrigierte Auflage. Haupt Verlag, Bern

    Google Scholar 

  2. Amiet F, Müller A, Neumeyer R (1999) Fauna Helvetica 9. Apidae 2: Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha. Centre Suisse de Cartographie de la Faune, Neuchatel

    Google Scholar 

  3. Amiet F, Herrmann M, Müller A, Neumeyer R (2001) Fauna Helvetica 9. Apidae 3: Lasioglossum, Halictus. Centre Suisse de Cartographie de la Faune, Neuchatel, Switzerland

  4. Amiet F, Herrmann M, Müller A, Neumeyer R (2004) Fauna Helvetica 9. Apidae 4: Anthidium, Chelostoma, Coelioxys, Dioxys, Heriades, Lithurgus, Megachile, Osmia, Stelis. Centre Suisse de Cartographie de la Faune, Neuchatel, Switzerland

  5. Amiet F, Herrmann M, Müller A, Neumeyer R (2007) Fauna Helvetica 9. Apidae 5: Ammobates, Ammobatoides, Anthophora, Biastes, Ceratina, Dasypoda, Epeoloides, Epeolus, Eucera, Macropis, Melecta, Melitta, Nomada, Pasites, Tetralonia, Thyreus, Xylocopa. Centre Suisse de Cartographie de la Faune, Neuchatel, Switzerland

  6. Baal T, Denker B, Mühlen W, Surholt B (1994) Die Ursachen des Massensterbens von Hummeln unter spätblühenden Linden. Nat Landsch 69:412–418

    Google Scholar 

  7. Bembé B, Gerlach G, Schuberth J, Schönitzer K (2001) Die Wildbienen im Botanischen Garten München. Nachrichtenblatt der bayererischen Entomologen 50:30–41

    Google Scholar 

  8. Bräu M, Nützel R (2010) Bienen und Wespen in München. Bund Naturschutz in Bayern e.V, Munich

    Google Scholar 

  9. Bußler H (2007) Mediterrane Holzbienen entdecken Bayern. LWF Aktuell 58:50–51

    Google Scholar 

  10. Dathe HH (1980) Die Arten der Gattung Hylaeus F. in Europa (Hymenoptera: Apoidea, Colletidae). Mitteilungen aus dem Zoologischen Museum in Berlin 56:207–294

    Google Scholar 

  11. Dorn M, Weber D (1988) Die Luzerne-Blattschneiderbiene und ihre Verwandten in Mitteleuropa. A. Ziemsen Verlag, Wittenberg

    Google Scholar 

  12. Falk SJ, Lewington R (2015) Field guide to the bees of Great Britain and Ireland. Bloomsbury, London

    Google Scholar 

  13. Frommer U, Flügel H-J (2005) Zur ausbreitung der furchenbiene Halictus scabiosae (Rossi, 1790) in mitteleuropa unter besonderer berücksichtigung der situation in hessen (Hymenoptera: Apidae). Mitteilungen des Internationalen Entomologischen Vereins 30:51–79

    Google Scholar 

  14. Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208

    Article  PubMed  CAS  Google Scholar 

  15. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957

    Article  PubMed  CAS  Google Scholar 

  16. Haeseler V, Ritzau C (1998) Zur Aussagekraft wirbelloser Tiere in Umwelt-und Naturschutzgutachten. Zeitschrift für Ökologie und Naturschutz 7:45–66

    Google Scholar 

  17. Hage HJ (2005) Die Holzbiene Xylocopa violacea (LlNNAEUS 1758) in Bayern (Hymenoptera, Apidae). Nachrichtenblatt der Bayerischen Entomologen 54:39–46

    Google Scholar 

  18. Hall DM, Camilo GR, Tonietto RK, Ollerton J, Ahrné K, Arduser M, Ascher JS, Baldock KCR, Fowler R, Frankie G, Goulson D, Gunnarsson B, Hanley ME, Jackson JI, Langellotto G, Lowenstein D, Minor ES, Philpott SM, Potts SG, Sirohi MH, Spevak EM, Stone GN, Threlfall CG (2016) The city as a refuge for insect pollinators. Conserv Biol 31:24–29

    Article  Google Scholar 

  19. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Goulson D (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12(10):e0185809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hernandez JL, Frankie GW, Thorp RW (2009) Ecology of urban bees: a review of current knowledge and directions for future study. Cities Environ 2:1–15

    Article  Google Scholar 

  21. Hopfenmüller S (2014) Folgt die Efeu-Seidenbiene Colletes hederae Schmidt & Westrich, 1993 dem Ausbreitungsweg der Furchenbiene Halictus scabiosae (Rossi, 1790) in Bayern? (Hymenoptera: Apoidea). Nachrichtenblatt der Bayerischen Entomologen 63:2–7

    Google Scholar 

  22. Knoerzer A (1941) Bemerkenswerte Hymenopterenfunde in Südbayern. Mitteilungen der Münchner Entomologischen Gesellschaft 31:934–937

    Google Scholar 

  23. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  24. Primack RB, Miller-Rushing AJ (2009) The role of botanical gardens in climate change research. New Phytol 182:303–313

    Article  PubMed  Google Scholar 

  25. Renner SS (2014) 100 Jahre Botanischer Garten München-Nymphenburg. Berichte der Bayerischen Botanischen Gesellschaft 84:35–38

    Google Scholar 

  26. Scheuchl E, Schwenninger HR (2015) Kritisches Verzeichnis und aktuelle Checkliste der Wildbienen Deutschlands (Hymenoptera Anthophila) sowie Anmerkungen zur Gefährdung. Mitteilungen des Entomologischen Vereins Stuttgart 50:3–225

    Google Scholar 

  27. Scheuchl E, Willner W (2016) Taschenlexikon der Wildbienen Mitteleuropas: alle Arten im Porträt. Quelle & Meyer, Wiebelsheim

    Google Scholar 

  28. Schmalz K-H (2005) Erste Sichtnachweise der blauschwarzen Holzbiene Xylocopa violacea (Hymenoptera Apidae) in Osthessen. Beiträge zur Naturkunde in Osthessen 41:45–46

    Google Scholar 

  29. Schmidt S, Schmid-Egger C, Morinière J, Haszprunar G, Hebert PDN (2015) DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoidea partim). Mol Ecol Resour 15:985–1000

    Article  PubMed  CAS  Google Scholar 

  30. von Hagen E, Aichhorn A (2014) Hummeln: Bestimmen, Ansiedeln, Vermehren, Schützen, 6th edn. Fauna Verlag, Germany

    Google Scholar 

  31. Westrich P (1989) Die Wildbienen Baden-Württembergs. E. Ulmer, Stuttgart

    Google Scholar 

  32. Westrich P, Frommer U, Mandery K, Riemann H, Ruhnke H, Saure C, Voith J (2011) Rote Liste und Gesamtartenliste der Bienen (Hymenoptera, Apidae) Deutschlands. Naturschutz und Biologische Vielfalt 70:373–416

    Google Scholar 

  33. Williams PH, Araújo MB, Rasmont P (2007) Can vulnerability among British bumblebee (Bombus) species be explained by niche position and breadth? Biol Cons 138:493–505

    Article  Google Scholar 

  34. Yee TW (2010) The VGAM package for categorical data analysis. J Stat Softw 32:1–34

    Article  Google Scholar 

  35. Zohner CM, Renner SS (2014) Common garden comparison of the leaf-out phenology of woody species from different native climates, combined with herbarium records, forecasts long-term change. Ecol Lett 17:1016–1025

    Article  PubMed  Google Scholar 

  36. Zurbuchen A, Müller A (2012) Wildbienenschutz: von der Wissenschaft zur Praxis. Haupt Verlag, Bern

    Google Scholar 

Download references

Acknowledgements

We thank B. Bembé, Munich, for information on his monitoring in the 1990s; J. Schuberth, S. Schmidt, and C. Zohner, Munich, and P. Westrich, Kusterdingen, for advice; H. Schäfer, Technical University of Munich, for unpublished primer sequences and advice; M. Silber and J. Babczinsky for help in the lab and with bee preparation; L. Alzinger, R. Thiessen-Bock, and C. Glassl for help with monitoring in 2016; M. Bräu and K. Mandery for information on bee ranges; H. Küchenhoff, and M. Bort from the LMU StaBLab for statistical advice; and the Editor-in-Chief, R. Brandl, and an anonymous reviewer for suggestions that helped improve the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Michaela M. Hofmann or Susanne S. Renner.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Roland A. Brandl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hofmann, M.M., Fleischmann, A. & Renner, S.S. Changes in the bee fauna of a German botanical garden between 1997 and 2017, attributable to climate warming, not other parameters. Oecologia 187, 701–706 (2018). https://doi.org/10.1007/s00442-018-4110-x

Download citation

Keywords

  • Botanic gardens
  • Bee fauna
  • Climate warming
  • Repeated monitoring
  • Stable habitat
  • Insect faunal change