Advertisement

Oecologia

, Volume 186, Issue 3, pp 783–792 | Cite as

Functional traits can improve our understanding of niche- and dispersal-based processes

  • Feng Jiang
  • Yanhan Xun
  • Huiying Cai
  • Guangze JinEmail author
Community ecology – original research

Abstract

Ecologists often determine the relative importance of niche- and dispersal-based processes via variation partitioning based on species composition. Functional traits and their proxies of phylogeny are expected to increase the detection of niche-based processes and reduce the unexplained variation relative to species identity. We collected eight adult tree traits and phylogenetic data of 41 species and employed a phylogenetic fuzzy weighting method to address this issue in a 9-ha temperate forest dynamics plot. We used redundancy analysis to relate species, phylogenetic and functional compositions to environmental (soil resources and topography) and spatial variables. We also performed multi-scaled analyses on spatial variables by adding environment as the covariates to determine if functional traits increase the detection of niche-based processes at broad scales. The functional traits and intraspecific variation of the wood density among ontogenetic stages could dramatically increase the detection of niche-based processes and reduce the unexplained variation relative to species identity. Phylogenetic and functional compositions were mainly driven by total soil P and elevation, while species composition was weakly affected by multiple environmental variables. After controlling for the environment, a larger amount of the compositional variations in seed mass and maximum height were explained by finer-scaled spatial variables, indicating that dispersal processes may be important at fine spatial scales. Our results suggested that considering functional traits and their intraspecific variations could improve our understanding of ecological processes and increase our ability to predict the responses of plants to environmental change.

Keywords

Intraspecific trait variation Maximum height Phylogenetic fuzzy weighting Seed mass Variation partitioning 

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (no. 31730015, National Natural Science Foundation of China), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB0203, Chinese Academy of Sciences) and the Fundamental Research Funds for the Central Universities (2572017EA02, Northeast Forestry University). We thank the editor and two anonymous reviewers for the constructive comments that improved the quality of the manuscript. We also thank Dr. Leandro D.S. Duarte for the help and suggestions for the calculations of the phylogenetic fuzzy weighting approach, and Dr. Jinlong Zhang and Dr. Robert Muscarella for providing suggestions on the construction of the phylogenetic tree.

Author contribution statement

FJ and GZJ conceived the idea. FJ, YHX and HYC collected the soil, topological and traits data. FJ analyzed the data. FJ and GZJ wrote the manuscript; other authors provided editorial advice.

Supplementary material

442_2018_4060_MOESM1_ESM.doc (4.4 mb)
Supplementary material 1 (DOC 4526 kb)

References

  1. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632.  https://doi.org/10.1890/07-0986.1 CrossRefPubMedGoogle Scholar
  2. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68.  https://doi.org/10.1016/S0304-3800(01)00501-4 CrossRefGoogle Scholar
  3. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055.  https://doi.org/10.2307/1940179 CrossRefGoogle Scholar
  4. Chang L-W, Zelený D, Li C-F, Chiu S-T, Hsieh C-F (2013) Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology 94:2145–2151.  https://doi.org/10.1890/12-2053.1 CrossRefPubMedGoogle Scholar
  5. Condit R (1998) Tropical forest census plots. Springer, BerlinCrossRefGoogle Scholar
  6. Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380.  https://doi.org/10.1071/BT02124 CrossRefGoogle Scholar
  7. De Cáceres M, Legendre P, Valencia R, Cao M, Chang L-W, Chuyong G, Condit R, Hao Z, Hsieh C-F, Hubbell S, Kenfack D, Ma K, Mi X, Supardi Noor MN, Kassim AR, Ren H, Su S-H, Sun IF, Thomas D, Ye W, He F (2012) The variation of tree beta diversity across a global network of forest plots. Glob Ecol Biogeogr 21:1191–1202.  https://doi.org/10.1111/j.1466-8238.2012.00770.x CrossRefGoogle Scholar
  8. Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275.  https://doi.org/10.1890/11-1183.1 CrossRefGoogle Scholar
  9. Duarte LDS, Debastiani VJ, Freitas AVL, Pillar VD, Peres-Neto P (2016) Dissecting phylogenetic fuzzy weighting: theory and application in metacommunity phylogenetics. Methods Ecol Evol 7:937–946.  https://doi.org/10.1111/2041-210x.12547 CrossRefGoogle Scholar
  10. Duarte LD, Prieto PV, Pillar VD (2012) Assessing spatial and environmental drivers of phylogenetic structure in Brazilian Araucaria forests. Ecography 35:952–960.  https://doi.org/10.1111/j.1600-0587.2011.07193.x CrossRefGoogle Scholar
  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fukami T, Martijn Bezemer T, Mortimer SR, Putten WH (2005) Species divergence and trait convergence in experimental plant community assembly. Ecol Lett 8:1283–1290.  https://doi.org/10.1111/j.1461-0248.2005.00829.x CrossRefGoogle Scholar
  13. Hietz P, Rosner S, Hietz-Seifert U, Wright SJ (2017) Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytol 213:170–180.  https://doi.org/10.1111/nph.14123 CrossRefPubMedGoogle Scholar
  14. Jiang F, Xun Y, Cai H, Jin G (2018) What factors potentially influence the ability of phylogenetic distance to predict trait dispersion in a temperate forest? Ecol Evol.  https://doi.org/10.1002/ece3.3691 (in press) PubMedCentralGoogle Scholar
  15. Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155:593–604.  https://doi.org/10.1007/s00442-007-0923-8 CrossRefPubMedGoogle Scholar
  16. Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140.  https://doi.org/10.1111/j.1365-2745.2010.01687.x CrossRefGoogle Scholar
  17. Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci USA 106:18621–18626.  https://doi.org/10.1073/pnas.0909820106 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450.  https://doi.org/10.1890/05-0549 CrossRefGoogle Scholar
  19. Legendre P, Borcard D, Peres-Neto PR (2008) Analyzing or explaining beta diversity? Comment. Ecology 89:3238–3244.  https://doi.org/10.1890/07-0272.1 CrossRefGoogle Scholar
  20. Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280.  https://doi.org/10.1007/s004420100716 CrossRefPubMedGoogle Scholar
  21. Legendre P, Legendre LF (2012) Numerical ecology. Elsevier, OxfordGoogle Scholar
  22. Legendre P, Mi X, Ren H, Ma K, Yu M, Sun I-F, He F (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674.  https://doi.org/10.1890/07-1880.1 CrossRefPubMedGoogle Scholar
  23. Liu X, Swenson NG, Zhang J, Ma K, Thompson K (2013) The environment and space, not phylogeny, determine trait dispersion in a subtropical forest. Funct Ecol 27:264–272.  https://doi.org/10.1111/1365-2435.12018 CrossRefGoogle Scholar
  24. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185.  https://doi.org/10.1016/j.tree.2006.02.002 CrossRefPubMedGoogle Scholar
  25. Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838–848.  https://doi.org/10.1111/j.1461-0248.2010.01476.x CrossRefPubMedGoogle Scholar
  26. Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009) Global patterns in plant height. J Ecol 97:923–932.  https://doi.org/10.1111/j.1365-2745.2009.01526.x CrossRefGoogle Scholar
  27. Moles AT, Westoby M (2006) Seed size and plant strategy across the whole life cycle. Oikos 113:91–105.  https://doi.org/10.1111/j.0030-1299.2006.14194.x CrossRefGoogle Scholar
  28. Muscarella R, Uriarte M, Erickson DL, Swenson NG, Zimmerman JK, Kress WJ (2014) A well-resolved phylogeny of the trees of Puerto Rico based on DNA barcode sequence data. PLoS One 9:e112843.  https://doi.org/10.1371/journal.pone.0112843 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Myers JA, Chase JM, Jimenez I, Jorgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R (2013) Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol Lett 16:151–157.  https://doi.org/10.1111/ele.12021 CrossRefPubMedGoogle Scholar
  30. Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, Iglesias A, Jaramillo CA, Johnson KR, Jordan GJ, Kraft NJ, Lovelock EC, Lusk CH, Niinemets U, Penuelas J, Rapson G, Wing SL, Wright IJ (2011) Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytol 190:724–739.  https://doi.org/10.1111/j.1469-8137.2010.03615.x CrossRefPubMedGoogle Scholar
  31. Pillar VD, Duarte L (2010) A framework for metacommunity analysis of phylogenetic structure. Ecol Lett 13:587–596.  https://doi.org/10.1111/j.1461-0248.2010.01456.x CrossRefPubMedGoogle Scholar
  32. Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008) Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology 89:1908–1920.  https://doi.org/10.1890/07-0207.1 CrossRefPubMedGoogle Scholar
  33. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234.  https://doi.org/10.1071/bt12225 CrossRefGoogle Scholar
  34. Qiao X, Li Q, Jiang Q, Lu J, Franklin S, Tang Z, Wang Q, Zhang J, Lu Z, Bao D, Guo Y, Liu H, Xu Y, Jiang M (2015) Beta diversity determinants in Badagongshan, a subtropical forest in central China. Sci Rep 5:17043.  https://doi.org/10.1038/srep17043 CrossRefPubMedPubMedCentralGoogle Scholar
  35. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  36. Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302.  https://doi.org/10.1093/bioinformatics/19.2.301 CrossRefPubMedGoogle Scholar
  37. Shi B, Gao W, Cai H, Jin G (2015) Spatial variation of soil respiration is linked to the forest structure and soil parameters in an old-growth mixed broadleaved-Korean pine forest in northeastern China. Plant Soil 400:263–274.  https://doi.org/10.1007/s11104-015-2730-z CrossRefGoogle Scholar
  38. Siefert A, Lesser MR, Fridley JD (2015) How do climate and dispersal traits limit ranges of tree species along latitudinal and elevational gradients? Glob Ecol Biogeogr 24:581–593.  https://doi.org/10.1111/geb.12287 CrossRefGoogle Scholar
  39. Siefert A, Ravenscroft C, Weiser MD, Swenson NG (2013) Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees. Glob Ecol Biogeogr 22:682–691.  https://doi.org/10.1111/geb.12030 CrossRefGoogle Scholar
  40. Silvestro D, Michalak I (2011) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337.  https://doi.org/10.1007/s13127-011-0056-0 CrossRefGoogle Scholar
  41. Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J Ecol 100:652–661.  https://doi.org/10.1111/j.1365-2745.2011.01945.x CrossRefGoogle Scholar
  42. Spasojevic MJ, Turner BL, Myers JA, Jones R (2016) When does intraspecific trait variation contribute to functional beta-diversity? J Ecol 104:487–496.  https://doi.org/10.1111/1365-2745.12518 CrossRefGoogle Scholar
  43. Spasojevic MJ, Yablon EA, Oberle B, Myers JA (2014) Ontogenetic trait variation influences tree community assembly across environmental gradients. Ecosphere 5:art129.  https://doi.org/10.1890/es14-000159.1 CrossRefGoogle Scholar
  44. State Forestry Administration (2001) Seeds of woody plants in China. China Forestry Publishing House, BeijingGoogle Scholar
  45. Swenson NG (2013) The assembly of tropical tree communities—the advances and shortcomings of phylogenetic and functional trait analyses. Ecography 36:264–276.  https://doi.org/10.1111/j.1600-0587.2012.00121.x CrossRefGoogle Scholar
  46. Swenson NG (2014) Functional and phylogenetic ecology in R. Springer, New YorkCrossRefGoogle Scholar
  47. Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90:2161–2170.  https://doi.org/10.1890/08-1025.1 CrossRefPubMedGoogle Scholar
  48. Swenson NG, Erickson DL, Mi X, Bourg NA, Forero-Montaña J, Ge X, Howe R, Lake JK, Liu X, Ma K, Pei N, Thompson J, Uriarte M, Wolf A, Wright SJ, Ye W, Zhang J, Zimmerman JK, Kress WJ (2012a) Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology 93:S112–S125.  https://doi.org/10.1890/11-0402.1 CrossRefGoogle Scholar
  49. Swenson NG, Stegen JC, Davies SJ, Erickson DL, Forero-Montaña J, Hurlbert AH, Kress WJ, Thompson J, Uriarte M, Wright SJ (2012b) Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity. Ecology 93:490–499.  https://doi.org/10.1890/11-1180.1 CrossRefPubMedGoogle Scholar
  50. Tuomisto H, Ruokolainen K (2006) Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology 87:2697–2708. 10.1890/0012-9658(2006)87[2697:aoebdu]2.0.co;2Google Scholar
  51. Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183.  https://doi.org/10.1111/j.1471-8286.2004.00829.x CrossRefGoogle Scholar
  52. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M (2004) The worldwide leaf economics spectrum. Nature 428:821–827.  https://doi.org/10.1038/nature02403 CrossRefPubMedGoogle Scholar
  53. Wu ZY, Raven PH (1994–2009) Flora of China. Science Press & Missouri Botanical Garden Press, Beijing & St LouisGoogle Scholar
  54. Yang J, Swenson NG, Zhang G, Ci X, Cao M, Sha L, Li J, Ferry Slik JW, Lin L (2015) Local-scale partitioning of functional and phylogenetic beta diversity in a tropical tree assemblage. Sci Rep 5:12731.  https://doi.org/10.1038/srep12731 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yang J, Zhang G, Ci X, Swenson NG, Cao M, Sha L, Li J, Baskin CC, Slik JWF, Lin L, Poorter L (2014) Functional and phylogenetic assembly in a Chinese tropical tree community across size classes, spatial scales and habitats. Funct Ecol 28:520–529.  https://doi.org/10.1111/1365-2435.12176 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Ecological ResearchNortheast Forestry UniversityHarbinChina

Personalised recommendations