Skip to main content

Advertisement

Log in

Weather-driven change in primary productivity explains variation in the amplitude of two herbivore population cycles in a boreal system

  • Population ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Vertebrate populations throughout the circumpolar north often exhibit cyclic dynamics, and predation is generally considered to be a primary driver of these cycles in a variety of herbivore species. However, weather and climate play a role in entraining cycles over broad landscapes and may alter cyclic dynamics, although the mechanism by which these processes operate is uncertain. Experimental and observational work has suggested that weather influences primary productivity over multi-year time periods, suggesting a pathway through which weather and climate may influence cyclic herbivore dynamics. Using long-term monitoring data, we investigated the relationships among multi-year weather conditions, measures of primary productivity, and the abundance of two cyclic herbivore species: snowshoe hare and northern red-backed vole. We found that precipitation (rain and snow) and growing season temperatures were strongly associated with variation in primary productivity over multi-year time horizons. In turn, fourfold variation in the amplitude of both the hare and vole cycles observed in our study area corresponded to long-term changes in primary productivity. The congruence of our results for these two species suggests a general mechanism by which weather and climate might influence cyclic herbivore population dynamics. Our findings also suggested that the association between climate warming and the disappearance of cycles might be initiated by changes in primary productivity. This work provides an explanation for observed influences of weather and climate on primary productivity and population cycles and will help our collective understanding of how future climate warming may influence these ecological phenomena in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aars J, Ims RA (2002) Intrinsic and climatic determinants of population demography: the winter dynamics of tundra voles. Ecology 83:3449–3456

    Article  Google Scholar 

  • Arthur SM, Prugh LR (2010) Predator-mediated indirect effects of snowshoe hares on Dall’s sheep in Alaska. J Wildl Manag 74:1709–1721

    Article  Google Scholar 

  • Beck PS, Juday GP, Alix C, Barber VA, Winslow SE, Sousa EE, Heiser P, Herriges JD, Goetz SJ (2011) Changes in forest productivity across Alaska consistent with biome shift. Ecol Lett 14:373–379

    Article  PubMed  Google Scholar 

  • Beck I, Ludwig R, Bernier M, Levesque E, Boike J (2015) Assessing permafrost degradation and land cover changes (1986–2009) using remote sensing data over Umiujaq, sub-arctic Québec. Permafr Periglac Process 26:129–141

    Article  Google Scholar 

  • Berner LT, Beck PSA, Bunn AG, Goetz SJ (2013) Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Global Change Biol 19:3449–3462

    Google Scholar 

  • Bierman SM, Fairbairn JP, Petty SJ, Elston DA, Tidhar D, Lambin X (2006) Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.). Am Nat 167:589–590

    Article  Google Scholar 

  • Bilodeau F, Gauthier G, Berteaux D (2013) The effect of snow cover on lemming population cycles in the Canadian High Arctic. Oecol 172:1007–1016

    Article  Google Scholar 

  • Boonstra R, Krebs CJ (2006) Population limitation of the northern red-backed vole in the boreal forests of northern Canada. J Anim Ecol 75:1269–1284

    Article  PubMed  Google Scholar 

  • Boonstra R, Krebs CJ (2012) Population dynamics of red-backed voles (Myodes) in North America. Oecol 168:601–620

    Article  Google Scholar 

  • Boonstra R, Krebs CJ, Stenseth NC (1998) Population cycles in small mammals: the problem of explaining the low phase. Ecology 79:1479–1488

    Article  Google Scholar 

  • Boonstra R, Krebs CJ, Gilbert BS, Schweiger S (2001) Voles and mice. In: Krebs CJ, Boutin S, Boonstra R (eds) Ecosystem dynamics of the boreal forest: the Kluane project. Oxford University, New York, pp 215–239

    Google Scholar 

  • Boonstra R, Andreassen HP, Boutin S, Husek J, Ims RA, Krebs CJ, Skarpe C, Wabakken P (2016) Why do the boreal forest ecosystems of northwestern Europe differ from those of western North America? Bioscience 66:722–734

    Article  PubMed  PubMed Central  Google Scholar 

  • Borchers D (2012) A non-technical overview of spatially explicit capture-recapture models. J Ornith 152(2):S435–S444

    Article  Google Scholar 

  • Bryant JP (1981) Phytochemical deterrence of snowshoe hare browsing by adventitious shoots of four Alaskan trees. Science 213:889–890

    Article  CAS  PubMed  Google Scholar 

  • Bryant JP, Wieland GD, Clausen T, Kuropat P (1985) Interactions of snowshoe hare and feltleaf willow in Alaska. Ecology 66:1564–1573

    Article  Google Scholar 

  • Cattadori IM, Haydon DT, Hudson PJ (2005) Parasites and climate synchronize red grouse populations. Nature 433:737–741

    Article  CAS  PubMed  Google Scholar 

  • Cornulier T, Yoccoz NG, Bretagnolle V, Brommer JE, Butet A, Ecke F, Elston DA, Framstad E, Henttonen H, Hornfeldt B, Huitu O, Imholt C, Ims RA, Jacob J, Jedrzejewska B, Million A, Petty SJ, Pietiainen H, Tkadlec E, Zub K, Lambin X (2013) Europe-wide dampening of population cycles in keystone herbivores. Science 340:63–66

    Article  CAS  PubMed  Google Scholar 

  • Efford MG, Fewster RM (2013) Estimating population size by spatially explicit capture-recapture. Oikos 122:918–928

    Article  Google Scholar 

  • Efford MG, Borchers DL, Byrom AE (2009) Density estimation by spatially explicit capture-recapture: likelihood-based methods. In: Thompson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Springer, New York, pp 255–269

    Chapter  Google Scholar 

  • Fauteux D, Cheveau M, Imbeau L, Drapeau P (2015a) Cyclic dynamics of a boreal southern red-backed vole population in northwestern Quebec. J Mammal 96:573–578

    Article  Google Scholar 

  • Fauteux D, Gauthier G, Berteaux D (2015b) Seasonal demography of a cyclic lemming population in the Canadian Arctic. J Anim Ecol 84:1412–1422

    Article  PubMed  Google Scholar 

  • Flowerdew JR, Amano T, Sutherland WJ (2017) Strong “bottom-up” influences on small mammal populations: state-space model analyses from long-term studies. Ecol Evol 7:1699–1711

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardner B, Royle JA, Wegan MT (2009) Hierarchical model for estimating density from DNA mark-recapture studies. Ecology 90:1106–1115

    Article  PubMed  Google Scholar 

  • Gardner B, Royle JA, Wegan MT, Rainbolt RE, Curtis PD (2010) Estimating black bear density using DNA data from hair snares. J Wildl Manag 74:318–325

    Article  Google Scholar 

  • Ginzburg LR, Krebs CJ (2015) Mammalian cycles: internally defined periods and interaction-driven amplitudes. PeerJ 3:e1180. https://doi.org/10.7717/peerj.1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardin MP, Hogg EH, Bernier PY, Kurz WA, Guo XJ, Cyr G (2016) Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Global Change Biol 22:627–643

    Article  Google Scholar 

  • Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci USA 102:13521–13525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TF, Stenseth NC, Henttonen H (1999) Multiannual vole cycles and population regulation during long winters: an analysis of seasonal density dependence. Am Nat 154:129–139

    Article  Google Scholar 

  • Hanski I, Turchin P, Korpimaki E, Henttonen H (1993) Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos. Nature 364:232–235

    Article  CAS  PubMed  Google Scholar 

  • Hansson L, Henttonen H (1985) Gradients in density variations of small rodents: the importance of latitude and snow cover. Oecol 67:394–402

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hodges KE, Krebs CJ, Hik DS, Stefan CI, Gillis EA, Doyle CE (2001) Snowshoe hare demography. In: Krebs CJ, Boutin S, Boonstra R (eds) Ecosystem dynamics of the boreal forest: the Kluane project. Oxford University, New York

    Google Scholar 

  • Hone J, Krebs CJ, O’Donoghue M (2011) Is the relationship between predator and prey abundances related to climate for lynx and snowshoe hares? Wildl Res 38:419–425

    Article  Google Scholar 

  • Hornfeldt B (2004) Long-term decline in numbers of cyclic voles in boreal Sweden: analysis and presentation of hypotheses. Oikos 107:376–392

    Article  Google Scholar 

  • Hornfeldt B, Hipkiss T, Eklund U (2005) Fading out of vole and predator cycles? Proc R Soc Lond B 272:2045–2049

    Article  Google Scholar 

  • Huitu O, Koivula M, Korpimaki E, Klemola T, Norrdahl K (2003) Winter food supply limits growth of northern vole populations in the absence of predation. Ecology 84:2108–2118

    Article  Google Scholar 

  • Huitu O, Jokinen I, Korpimaki E, Koskela E, Mappes T (2007) Phase dependence in winter physiological condition of cyclic voles. Oikos 116:565–577

    Article  CAS  Google Scholar 

  • Ims RA, Fuglei E (2005) Trophic interaction cycles in tundra ecosystems and the impact of climate change. Bioscience 55:311–322

    Article  Google Scholar 

  • Ims RA, Henden J-A, Killengreen ST (2008) Collapsing population cycles. Trends Ecol Evol 23:79–86

    Article  PubMed  Google Scholar 

  • Johnson K, Boonstra R, Boutin S, Devineau O, Krebs CJ (2017) Surviving winter: food, but not habitat structure, prevents crashes in cyclic vole populations. Ecol Evol 7:115–124

    Article  Google Scholar 

  • Kausrud KL, Mysterud A, Steen H, Vik JO, Ostbye E, Cazelles B, Framstad E, Eikeset AM, Mysterud I, Solhoy T, Stenseth NC (2008) Linking climate change to lemming cycles. Nature 456:93–97

    Article  CAS  PubMed  Google Scholar 

  • Keith LB, Windberg LA (1978) A demographic analysis of the snowshoe hare cycle. Wildl Monogr 58:3–70

    Google Scholar 

  • Keith LB, Cary JR, Rongstad OJ, Brittingham MC (1984) Demography and ecology of a declining snowshoe hare population. Wildl Monogr 90:3–43

    Google Scholar 

  • Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18:299–305

    Article  Google Scholar 

  • Korpela K, Delgado M, Henttonen H, Kopimaki E, Koskela E, Ovaskainen O, Pietiainen H, Sundell J, Yoccoz NG, Huitu O (2013) Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Global Change Biol 19:697–710

    Article  Google Scholar 

  • Korpimaki E, Krebs CJ (1996) Predation and population cycles of small mammals: a reassessment of the predation hypothesis. Bioscience 46:754–764

    Article  Google Scholar 

  • Korpimaki E, Norrdahl K, Klemola T, Pettersen T, Stenseth NC (2002) Dynamic effects of predators on cyclic voles: field experimentation and model extrapolation. Proc R Soc Lond B 269:991–997

    Article  Google Scholar 

  • Korpimaki E, Brown PR, Jacob J, Pech RP (2004) The puzzles of population cycles and outbreaks of small mammals solved? Bioscience 54:1071–1079

    Article  Google Scholar 

  • Korslund L, Steen H (2006) Small rodent winter survival: snow conditions limit access to food resources. J Anim Ecol 75:156–166

    Article  PubMed  Google Scholar 

  • Krebs CJ (2011) Of lemmings and snowshoe hares: the ecology of northern Canada. Proc R Soc Lond B 278:481–489

    Article  Google Scholar 

  • Krebs CJ (2013) Population fluctuations in rodents. University of Chicago, Chicago

    Book  Google Scholar 

  • Krebs CJ, Boutin S, Boonstra R, Sinclair ARE, Smith JNM, Dale MRT, Martin K, Turkington R (1995) Impact of food and predation on the snowshoe hare cycle. Science 269:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Krebs CJ, Boutin S, Boonstra R (2001a) Ecosystem dynamics of the boreal forest: the Kluane Project. Oxford University, New York

    Google Scholar 

  • Krebs CJ, Boonstra R, Boutin S, Sinclair ARE (2001b) What drives the 10-year cycle of snowshoe hares? Bioscience 51:25–35

    Article  Google Scholar 

  • Krebs CJ, Kenney AJ, Gilbert S, Danell J, Angerbjorn A, Erlinge S, Bromley R, Shank C, Carriere S (2002) Synchrony in lemming and vole populations in the Canadian Arctic. Can J Zool 80:1323–1333

    Article  Google Scholar 

  • Krebs CJ, Boonstra R, Cowcill K, Kenney AJ (2009) Climate determinants of berry crops in the boreal forest of the southwestern Yukon. Botany 87:401–408

    Article  Google Scholar 

  • Krebs CJ, Cowcill K, Boonstra R, Kenney AJ (2010) Do changes in berry crops drive population fluctuations in small rodents in the southwestern Yukon? J Mammol 91:500–509

    Article  Google Scholar 

  • Krebs CJ, Kielland K, Bryant J, O’Donoghue M, Doyle F, McIntyre C, DiFolco D, Berg N, Carriere S, Boonstra R, Boutin S, Kenney AJ, Reid DG, Bodony K, Putera J, Timm HK, Burke T (2013) Synchrony in the snowshoe hare (Lepus americanus) cycle in northwestern North America, 1970–2012. Can J Zool 91:562–572

    Article  Google Scholar 

  • Krebs CJ, Bryant J, Kielland K, O’Donoghue M, Doyle F, Carriere S, DiFolco D, Berg N, Boonstra R, Boutin S, Kenney AJ, Reid DG, Bodony K, Putera J, Timm HK, Burke T, Maier JAK, Golden H (2014a) What factors determine cyclic amplitude in the snowshoe hare (Lepus americanus) cycle? Can J Zool 92:1039–1048

    Article  Google Scholar 

  • Krebs CJ, Boonstra R, Boutin S, Sinclair ARE, Smith JNM, Gilbert BS, Martin K, O’Donoghue M, Turkington R (2014b) Trophic dynamics of the boreal forests of the Kluane region. Arctic 67:71–81

    Article  Google Scholar 

  • Lloyd AH, Duffy PA, Mann DH (2013) Nonlinear responses of white spruce to climate variability in interior Alaska. Can J For Res 43:331–343

    Article  Google Scholar 

  • McIntyre CL, Adams LG (1999) Reproductive characteristics of migratory Golden Eagles in Denali National Park, Alaska. Condor 101:115–123

    Article  Google Scholar 

  • McIntyre CL, Schmidt JH (2012) Ecological and environmental correlates of territory occupancy and breeding performance of migratory Golden Eagles Aquila chrysaetos in interior Alaska. Ibis 154:124–135

    Article  Google Scholar 

  • Natali SM, Schuur EAG, Rubin RL (2012) Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J Ecol 100:488–498

    Article  Google Scholar 

  • Nicklen EF, Roland CA, Ruess RW, Schmidt JH, Lloyd AH (2016) Local site conditions drive climate-growth responses of Picea mariana and Picea glauca in interior Alaska. Ecosphere 7:e01507

    Article  Google Scholar 

  • Pettorelli N, Weladji RB, Holand O, Mysterud A, Breie H, Stenseth NC (2005) The relative role of winter and spring conditions: linking climate and landscape-scale plant phenology to alpine reindeer body mass. Biol Lett 1:24–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Prevedello JA, Dickman CR, Vieira MV, Vieira EM (2013) Population responses of small mammals to food supply and predators: a global meta-analysis. J Anim Ecol 82:927–936

    Article  PubMed  Google Scholar 

  • Previtali MA, Lima M, Meserve PL, Kelt DA, Gutierrez JR (2009) Population dynamics of two sympatric rodents in a variable environment: rainfall, resource availability, and predation. Ecology 90:1996–2006

    Article  PubMed  Google Scholar 

  • Reid DG, Krebs CJ (1996) Limitations to collared lemming population growth in winter. Can J Zool 74:1284–1291

    Article  Google Scholar 

  • Reynolds JJH, Lambin X, Massey FP, Reidinger S, Sherratt JA, Smith MJ, White A, Hartley SE (2012) Delayed induced silica defences in grasses and their potential for destabilizing herbivore population dynamics. Oecol 170:445–456

    Article  Google Scholar 

  • Roland CA, Schmidt JH, Nicklen EF (2013) Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska. Ecol Monogr 83:19–48

    Article  Google Scholar 

  • Roland CA, Schmidt JH, Johnstone JF (2014) Climate sensitivity of reproduction in a mast-seeding boreal conifer across its distributional range from lowland to treeline forests. Oecol 174:665–677

    Article  Google Scholar 

  • Royle JA, Dorazio RM (2008) Hierarchical modeling and inference in ecology. Academic Press, London

    Google Scholar 

  • Royle JA, Young K (2008) A hierarchical model for spatial capture-recapture data. Ecology 89:2281–2289

    Article  PubMed  Google Scholar 

  • Royle JA, Dorazio RM, Link WA (2007) Analysis of multinomial models with unknown index using data augmentation. J Comp Graph Stat 16:67–85

    Article  Google Scholar 

  • Royle JA, Karanth KU, Gopalaswamy AM, Kumar NS (2009) Bayesian inference in camera trapping studies for a class of spatial capture-recapture models. Ecology 90:3233–3244

    Article  PubMed  Google Scholar 

  • Schaeffer SM, Sharp E, Schimel JP, Welker JM (2013) Soil-plant N processes in a high arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall. Global Change Biol 19:3529–3539

    Google Scholar 

  • Seldal T, Anderson K-J, Hogstedt G (1994) Grazing-induced proteinase inhibitors: a possible cause for lemming population cycles. Oikos 70:3–11

    Article  Google Scholar 

  • Shulski M, Wendler G (2007) The climate of Alaska. University of Alaska, Fairbanks

    Google Scholar 

  • Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013) Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497:615–619

    Article  CAS  PubMed  Google Scholar 

  • Sousanes PJ (2008) Annual climate summary 2006. Central Alaska Network. Natural Resource Technical Report NPS/CAKN/NRTR-2008/141. National Park Service, Fort Collins, Colorado, USA

  • Stenseth NC (1999) Population cycles in voles and lemmings: density dependence and phase dependence in a stochastic world. Oikos 87:427–461

    Article  Google Scholar 

  • Stenseth NC, Bjornstad ON, Saitoh T (1996) A gradient from stable to cyclic populations of Clethrionomys rufocanus in Hokkaido, Japan. Proc R Soc Lond B 263:1117–1126

    Article  CAS  Google Scholar 

  • Stenseth NC, Falck W, Chan K-S, Bjornstad ON, O’Donoghue M, Tong H, Boonstra R, Boutin S, Krebs CJ, Yoccoz NG (1998) From patterns to processes: phase and density dependencies in the Canadian lynx cycle. Proc Natl Acad Sci USA 95:15430–15435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenseth NC, Chan K-S, Tong H, Boonstra R, Boutin S, Krebs CJ, Post E, O’Donoghue M, Yoccoz NG, Forchhammer MC, Hurrell JW (1999) Common dynamic structure of Canada lynx populations within three climatic regions. Science 285:1071–1073

    Article  CAS  PubMed  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan K-S, Mauricia L (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  CAS  PubMed  Google Scholar 

  • Stenseth NC, Viljugrein H, Saitoh T, Hansen TF, Kittilsen MO, Bolvikenl E, Glockner F (2003) Seasonality, density dependence, and population cycles in Hokkaido voles. Proc Natl Acad Sci USA 100:11478–11483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Austria. http://www.R-project.org/

  • Terraube J, Villers A, Ruffino L, Iso-Iivari L, Henttonen H, Oksanen T, Korpimaki E (2015) Coping with fast climate change in northern ecosystems: mechanisms underlying the population-level response of a specialist avian predator. Ecography 38:690–699

    Article  Google Scholar 

  • Therrien J-F, Gauthier G, Korpimaki E, Bety J (2014) Predation pressure by avian predators suggests summer limitation of small-mammal populations in the Canadian Arctic. Ecology 95:56–67

    Article  CAS  PubMed  Google Scholar 

  • Thomas A, O’Hara B, Ligges U, Sturtz S (2006) Making BUGS open. R News 6:12–17

    Google Scholar 

  • Verbyla D (2008) The greening and browning of Alaska based on 1982–2003 satellite data. Glob Ecol Biogeogr 17:547–555

    Article  Google Scholar 

  • Walker X, Johnstone JF (2014) Widespread negative correlations between black spruce growth and temperature across topographic moisture gradients in the boreal forest. Environ Res Lett 9:064016. https://doi.org/10.1088/1748-9326/9/6/064016

    Article  Google Scholar 

  • Watson A, Moss R, Rothery P (2000) Weather and synchrony in 10-year population cycles of rock ptarmigan and red grouse in Scotland. Ecology 81:2126–2136

    Article  Google Scholar 

  • West SD (1982) Dynamics of colonization and abundance in central Alaskan populations of the northern red-backed vole Clethrionomys rutilus. J Mammal 51:341–347

    Google Scholar 

  • Whitney P (1976) Population ecology of two sympatric species of subarctic microtine rodents. Ecol Monogr 46:85–104

    Article  Google Scholar 

  • Whitney P, Feist D (1984) Abundance and survival of Clethrionomys rutilis in relation to snow cover in a forested habitat near College, Alaska. Spec Publ Carnegie Mus Nat Hist 10:113–120

    Google Scholar 

  • Wieczorek M, Zub K, Szafranska PA, Ksiazek A, Konarzewski M (2014) Plant-herbivore interactions: silicon concentration in tussock sedges and population dynamics of root voles. Funct Ecol 29:187–194

    Article  Google Scholar 

  • Wipf S, Rixen C (2010) A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res 29:95–109

    Article  Google Scholar 

  • Yan C, Stenseth NC, Krebs CJ, Zhang Z (2013) Linking climate change to population cycles of hares and lynx. Global Change Biol 19:3263–3271

    Google Scholar 

  • Yoccoz NG, Ims RA (1999) Demography of small mammals in cold regions: the importance of environmental variability. Ecol Bull 47:137–144

    Google Scholar 

  • Zona D, Lipson DA, Richards JH, Phoenix GK, Liljedahl AK, Ueyama M, Sturtevant CS, Oechel WC (2014) Delayed responses of an Arctic ecosystem to an extreme summer: impacts on net ecosystem exchange and vegetation functioning. Biogeosciences 11:5877–5888

    Article  Google Scholar 

Download references

Acknowledgements

J. D. Nichols and N. G. Yoccoz provided helpful comments on a previous version of this manuscript. We thank D. Verbyla for providing the NDVI data, J. Walker for thoughtful discussions, and J. Mizel for help designing figures. Funding for this work was provided by the US National Park Service, specifically the Central Alaska Network and Denali National Park and Preserve. Any mention of trade names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

EAR designed the vole study and EAR and MJF collected the vole data. CLM designed the hare project and collected the hare data. JHS analyzed the data and wrote the manuscript. All authors contributed to the conceptual integration of the datasets, discussed the results, and made substantive comments on the manuscript.

Corresponding author

Correspondence to Joshua H. Schmidt.

Additional information

Communicated by Janne Sundell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, J.H., Rexstad, E.A., Roland, C.A. et al. Weather-driven change in primary productivity explains variation in the amplitude of two herbivore population cycles in a boreal system. Oecologia 186, 435–446 (2018). https://doi.org/10.1007/s00442-017-4004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-4004-3

Keywords

Navigation