Abstract
Hypoxic or oxygen-free zones are linked to large-scale mortalities of fauna in aquatic environments. Studies investigating the hypoxia tolerance of fish are limited and focused on marine species and short-term exposure. However, there has been minimal effort to understand the implications of long-term exposure on fish and their ability to acclimate. To test the effects of long-term exposure (months) of fish to hypoxia we devised a novel method to control the level of available oxygen. Juvenile golden perch (Macquaria ambigua ambigua), and silver perch (Bidyanus bidyanus), two key native species found within the Murray Darling Basin, Australia, were exposed to different temperatures (20, 24 and 28 °C) combined with normoxic (6–8 mgO2 L−1 or 12–14 kPa) and hypoxic (3–4 mgO2 L−1 or 7–9 kPa) conditions. After 10 months, fish were placed in individual respirometry chambers to measure standard and maximum metabolic rate (SMR and MMR), absolute aerobic scope (AAS) and hypoxia tolerance. Golden perch had a much higher tolerance to hypoxia exposure than silver perch, as most silver perch died after only 1 month exposure. Golden perch acclimated to hypoxia had reduced MMR at 20 and 28 °C, but there was no change to SMR. Long-term exposure to hypoxia improved the tolerance of golden perch to hypoxia, compared to individuals held under normoxic conditions suggesting that golden perch can acclimate to levels around 3 mgO2 L−1 (kPa ~ 7) and lower. The contrasting tolerance of two sympatric fish species to hypoxia highlights our lack of understanding of how hypoxia effects fish after long-term exposure.
This is a preview of subscription content, access via your institution.







References
Breitburg DL, Hondorp DW, Davias LA, Diaz RJ (2009) Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes. Ann Rev Mar Sci 1:329–349
Chabot D, Steffensen JF, Farrell AP (2016) The determination of standard metabolic rate in fishes. J Fish Biol 88(1):81–121
Claireaux G, Chabot D (2016) Responses by fishes to environmental hypoxia: integration through Fry’s concept of aerobic metabolic scope. J Fish Biol 88(1):232–251
Collins GM, Clark TD, Rummer JL, Carton AG (2013) Hypoxia tolerance is conserved across genetically distinct sub-populations of an iconic, tropical Australian teleost (Lates calcarifer). Conserv Physiol 1(1):1–9
Conley D, Carstensen J, Vaquer-Sunyer R, Duarte C (2009) Ecosystem thresholds with hypoxia. In: Andersen JH, Conley DJ (eds) Eutrophication in coastal ecosystems, vol 207. Springer, Netherlands, pp 21–29
Cook DG, Iftikar FI, Baker DW, Hickey AJ, Herbert NA (2013) Low-O2 acclimation shifts the hypoxia avoidance behaviour of snapper (Pagrus auratus) with only subtle changes in aerobic and anaerobic function. J Exp Biol 216(3):369–378
Dean TL, Richardson J (1999) Responses of seven species of native freshwater fish and a shrimp to low levels of dissolved oxygen. N Z J Mar Freshw Res 33(1):99–106
Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB (2015) Climate change tightens a metabolic constraint on marine habitats. Science 348(6239):1132–1135
Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926–929
Díaz RJ, Rosenberg R (2011) Introduction to environmental and economic consequences of hypoxia. Int J Water Resour Dev 27(1):71–82
Eliason EJ, Farrell AP (2016) Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet. J Fish Biol 88(1):359–388
Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SG, Farrell AP (2011) Differences in thermal tolerance among sockeye salmon populations. Science 332(6025):109–112
Farrell AP (2016) Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning. J Fish Biol 88(1):322–343
Feng J, Guo Y, Gao Y, Zhu L (2016) Effects of hypoxia on the physiology of zebrafish (Danio rerio): initial responses, acclimation and recovery. Bull Environ Contam Toxicol 96(1):43–48
Fu S-J, Brauner CJ, Cao Z-D, Richards JG, Peng J-L, Dhillon R, Wang Y-X (2011) The effect of acclimation to hypoxia and sustained exercise on subsequent hypoxia tolerance and swimming performance in goldfish (Carassius auratus). J Exp Biol 214(12):2080–2088
Hague MJ, Ferrari MR, Miller JR, Patterson DA, Russell GL, Farrell AP, Hinch SG (2011) Modelling the future hydroclimatology of the lower Fraser River and its impacts on the spawning migration survival of sockeye salmon. Glob Change Biol 17(1):87–98
Helz GR, Adelson JM (2013) Trace element profiles in sediments as proxies of dead zone history; rhenium compared to molybdenum. Environ Sci Technol 47(3):1257–1264
King AJ, Tonkin Z, Lieshcke J (2012) Short-term effects of a prolonged blackwater event on aquatic fauna in the Murray River, Australia: considerations for future events. Mar Freshw Res 63(7):576–586
Koehn JD, Nicol SJ (2016) Comparative movements of four large fish species in a lowland river. J Fish Biol 88(4):1350–1368
Lintermans M (2007) Fishes of the Murray-Darling basin: an introductory guide. Murray Darling Basin Comission Publication, Canberra, ACT, pp 1–131
McBryan TL, Anttila K, Healy TM, Schulte PM (2013) Responses to temperature and hypoxia as interacting stressors in fish: implications for adaptation to environmental change. Integr Comp Biol 53(4):648–659
McCarthy B, Zukowski S, Whiterod N, Vilizzi L, Beesley L, King A (2014) Hypoxic blackwater event severely impacts Murray crayfish (Euastacus armatus) populations in the Murray River, Australia. Austral Ecol 39(5):491–500
McMaster D, Bond N (2008) A field and experimental study on the tolerances of fish to Eucalyptus camaldulensis leachate and low dissolved oxygen concentrations. Mar Freshw Res 59(2):177–185
McNeil DG, Closs GP (2007) Behavioural responses of a south-east Australian floodplain fish community to gradual hypoxia. Freshw Biol 52(3):412–420
Metcalfe NB, Van Leeuwen TE, Killen SS (2016) Does individual variation in metabolic phenotype predict fish behaviour and performance? J Fish Biol 88(1):298–321
Nash RD, Valencia AH, Geffen AJ (2006) The origin of Fulton’s condition factor—setting the record straight. Fisheries 31(5):236–238
Neuheimer AB, Thresher RE, Lyle JM, Semmens JM (2011) Tolerance limit for fish growth exceeded by warming waters. Nat Clim Change 1(2):110–113
Nilsson GE, Crawley N, Lunde IG, Munday PL (2009) Elevated temperature reduces the respiratory scope of coral reef fishes. Glob Change Biol 15(6):1405–1412
Norin T, Clark TD (2016) Measurement and relevance of maximum metabolic rate in fishes. J Fish Biol 88(1):122–151
Pollock MS, Clarke LMJ, Dubé MG (2007) The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ Rev 15:1–14
Pörtner HO, Lannig G (2009) Oxygen and capacity limited thermal tolerance. In: Jeffrey APF, Richards G, Colin JB (eds) Fish physiology, vol 27. Academic Press, Cambridge, pp 143–191
Rand PS, Hinch SG, Morrison J, Foreman MGG, MacNutt MJ, Macdonald JS, Healey MC, Farrell AP, Higgs DA (2006) Effects of river discharge, temperature, and future climates on energetics and mortality of adult migrating Fraser River sockeye salmon. Trans Am Fish Soc 135(3):655–667
Richardson J, Williams EK, Hickey CW (2001) Avoidance behaviour of freshwater fish and shrimp exposed to ammonia and low dissolved oxygen separately and in combination. N Z J Mar Freshw Res 35(3):625–633
Roche DG, Binning SA, Bosiger Y, Johansen JL, Rummer JL (2013) Finding the best estimates of metabolic rates in a coral reef fish. J Exp Biol 216(11):2103–2110
Rogers NJ, Urbina MA, Reardon EE, McKenzie DJ, Wilson RW (2016) A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit). Conserv Physiol 4(1):1–19
Rowland SJ (2008) Domestication of silver perch, Bidyanus bidyanus, broodfish. J Appl Aquac 16(1–2):75–83
Rowland SJ (2009) Review of aquaculture research and development of the Australian freshwater fish silver perch, Bidyanus bidyanus. J World Aquac Soc 40(3):291–324
Rowland SJ, Tully P (2004) Hatchery quality assurance program for Murray cod (Maccullochella peelii peelii), golden perch (Macquaria ambigua), and silver perch (Bidyanus bidyanus). NSW Department of Primary Industries, Sydney
R Studio Team (2016) RStudio: integrated development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/
Sollid J, Weber RE, Nilsson GE (2005) Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus. J Exp Biol 208(6):1109–1116
Timmerman CM, Chapman LJ (2004) Behavioural and physiological compensation for chronic hypoxia in the Sailfin molly (Poecilia latipinna). Physiol Biochem Zool 77(4):601–610
Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci 105(40):15452–15457
Whitworth KL, Baldwin DS, Kerr JL (2012) Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray-Darling Basin, Australia). J Hydrol 450:190–198
Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Poll Bull 45(1):35–45
Zhang W, Cao Z-D, Peng J-L, Chen B-J, Fu S-J (2010) The effects of dissolved oxygen level on the metabolic interaction between digestion and locomotion in juvenile southern catfish (Silurus meridionalis Chen). Comp Biochem Physiol Mol Integr Physiol 157(3):212–219
Acknowledgements
We would like to thank the Goyder Institute for Water research for funding which contributed to the success of this research. Funding from an ARC Future Fellowship (FT100100767) is also acknowledged. We would also like to thank Owen Burnell for his assistance in developing the novel approach to degassing multiple tanks to create hypoxic conditions long term in aquaria, and Lincoln Gilmore for building the respirometry chambers. Fish were kept according to the Australian Code of Practice for the care and use of animals for scientific purposes (8th Edition), and approved by the University of Adelaide’s animal care and ethics committee (AEC project approval S-2013-183).
Author information
Authors and Affiliations
Contributions
KLG, BMG and ZAD conceived the experiment, KLG was responsible for the design of the experiment, performing the experiment and analysing data. KLG wrote the manuscript; BMG and ZAD were crucial in reviewing work and provided editorial advice.
Corresponding author
Additional information
Communicated by Donovan P. German.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gilmore, K.L., Doubleday, Z.A. & Gillanders, B.M. Testing hypoxia: physiological effects of long-term exposure in two freshwater fishes. Oecologia 186, 37–47 (2018). https://doi.org/10.1007/s00442-017-3992-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00442-017-3992-3
Keywords
- Metabolic scope
- Sub-lethal
- Threshold limit
- Acclimation
- Water management