Mycorrhizal associations and the spatial structure of an old-growth forest community

Abstract

Plant-soil feedbacks are known to play a central role in species co-existence, but conceptual frameworks for predicting their magnitude and direction are lacking. We ask whether co-occurring trees that associate with different types of mycorrhizal fungi, which are hypothesized to differ in terms of nutrient use and plant-soil feedbacks, differ in sapling establishment densities and probability of co-occurrence. Given that ectomycorrhizal (ECM) trees typically have fungal structures that protect roots from pathogens whereas arbuscular mycorrhizal (AM) trees do not, we hypothesized that ECM saplings would be clustered around ECM trees, while AM saplings would be suppressed near AM trees. Most previous studies have focused on seedlings, but here we examine whether the spatial signal is evident in later life stages. We measured the spatial associations of ~ 28,000 trees using point pattern analysis in a 25-ha old-growth forest where ECM trees comprised 72% of total basal area and 42% of the total stems, while AM trees comprised the remainder. Supporting our hypothesis, AM saplings were more inhibited by AM trees, while ECM saplings were more clustered around ECM trees. The spatial patterns of AM and ECM trees on saplings of the alternate mycorrhizal type were inhibited. To the extent that similar types of feedbacks occur for other AM and ECM trees, our results suggest that fundamental differences in the nature of local-scale biotic interactions between trees and their fungal symbionts may influence forest community assembly and ecosystem dynamics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anderson-Teixeira KJ et al (2015) CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob Change Biol 21:528–549. doi:10.1111/gcb.12712

    Article  Google Scholar 

  2. Bâ AM, McGuire KL, Diédhiou AG (2014) Ectomycorrhizal symbioses in tropical and neotropical forests. CRC, Boca Raton

    Google Scholar 

  3. Baddeley A, Turner R (2005) spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:42. doi:10.18637/jss.v012.i06

    Article  Google Scholar 

  4. Baddeley AJ, Møller J, Waagepetersen R (2000) Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat Neerl 54:329–350. doi:10.1111/1467-9574.00144

    Article  Google Scholar 

  5. Baddeley A, Rubak E, Turner R (2015) Spatial point patterns. CRC, Boca Raton

    Google Scholar 

  6. Bauer JT, Mack KML, Bever JD (2015) Plant-soil feedbacks as drivers of succession: evidence from remnant and restored tallgrass prairies. Ecosphere 6:1–12. doi:10.1890/ES14-00480.1

    Article  Google Scholar 

  7. Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355:181–184. doi:10.1126/science.aai8212

    CAS  Article  PubMed  Google Scholar 

  8. Bever JD, Mangan SA, Alexander HM (2015) Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst 46:305–325. doi:10.1146/annurev-ecolsys-112414-054306

    Article  Google Scholar 

  9. Burrascano S, Keeton WS, Sabatini FM, Blasi C (2013) Commonality and variability in the structural attributes of moist temperate old-growth forests: a global review. For Ecol Manage 291:458–479. doi:10.1016/j.foreco.2012.11.020

    Article  Google Scholar 

  10. Chapman SK, Langley JA, Hart SC, Koch GW (2006) Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol 169:27–34. doi:10.1111/j.1469-8137.2005.01571.x

    CAS  Article  PubMed  Google Scholar 

  11. Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329:330–332

    CAS  Article  PubMed  Google Scholar 

  12. Condit R (1998) Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer, New York

    Book  Google Scholar 

  13. Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forests. In: den Boer PJG, Gradwells GR (eds) Dynamics of populations. Center for Agricultural Publishing and Documentation, Wageningen, pp 298–310

    Google Scholar 

  14. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  15. Cornelissen JHC, Aerts R, Cerabolini B, Werger MJA, van der Heijden MGA (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129:611–619

    CAS  Article  PubMed  Google Scholar 

  16. Corrales A, Mangan SA, Turner BL, Dalling JW (2016) An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol Lett 19:383–392

    Article  PubMed  Google Scholar 

  17. de Kroon H et al (2012) Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity. J Ecol 100:6–15. doi:10.1111/j.1365-2745.2011.01906.x

    Article  Google Scholar 

  18. Development Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  19. Dickie IA, Koele N, Blum JD, Gleason JD, McGlone MS (2014) Mycorrhizas in changing ecosystems. Botany 92:149–160. doi:10.1139/cjb-2013-0091

    CAS  Article  Google Scholar 

  20. Getzin S, Wiegand T, Wiegand K, He F (2008) Heterogeneity influences spatial patterns and demographics in forest stands. J Ecol 96:807–820. doi:10.1111/j.1365-2745.2008.01377.x

    Article  Google Scholar 

  21. Goebel PC, Hix DM (1996) Development of mixed-oak forests in southeastern Ohio: a comparison of second-growth and old-growth forests. For Ecol Manage 84:1–21. doi:10.1016/0378-1127(96)03772-3

    Article  Google Scholar 

  22. Harms KE, Wright SJ, Calderón O, Hernández A, Herre EA (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493–495

    CAS  Article  PubMed  Google Scholar 

  23. Hersh MH, Vilgalys R, Clark JS (2012) Evaluating the impacts of multiple generalist fungal pathogens on temperate tree seedling survival. Ecology 93:511–520. doi:10.1890/11-0598.1

    Article  PubMed  Google Scholar 

  24. Holste EK, Kobe RK, Gehring CA (2017) Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Mycorrhiza 27:211–223. doi:10.1007/s00572-016-0744-x

    CAS  Article  PubMed  Google Scholar 

  25. Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  26. Jastrow J (1996) Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol Biochem 28:665–676

    CAS  Article  Google Scholar 

  27. Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimators for United States tree species. For Sci 49:12–35

    Google Scholar 

  28. Johnson DJ, Beaulieu WT, Bever JD, Clay K (2012) Conspecific negative density dependence and forest diversity. Science 336:904–907. doi:10.1126/science.1220269

    CAS  Article  PubMed  Google Scholar 

  29. Johnson DJ, Bourg NA, Howe R, McShea WJ, Wolf A, Clay K (2014) Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology 95:2493–2503. doi:10.1890/13-2098.1

    Article  Google Scholar 

  30. Kardol P, Martijn Bezemer T, van der Putten WH (2006) Temporal variation in plant–soil feedback controls succession. Ecol Lett 9:1080–1088. doi:10.1111/j.1461-0248.2006.00953.x

    Article  PubMed  Google Scholar 

  31. Kulmatiski A, Beard KH, Heavilin J (2012) Plant–soil feedbacks provide an additional explanation for diversity–productivity relationships. Proc R Soc B Biol Sci. doi:10.1098/rspb.2012.0285

    Google Scholar 

  32. LaManna JA, Walton ML, Turner BL, Myers JA (2016) Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecol Lett 19:657–667. doi:10.1111/ele.12603

    Article  PubMed  Google Scholar 

  33. LaManna JA et al (2017) Plant diversity increases with the strength of negative density dependence at the global scale. Science 356:1389–1392. doi:10.1126/science.aam5678

    CAS  Article  PubMed  Google Scholar 

  34. Lin G, McCormack ML, Ma C, Guo D (2016) Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytol 213:1440–1451. doi:10.1111/nph.14206

    Article  PubMed  Google Scholar 

  35. Marx DH (1972) Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu Rev Phytopathol 10:429–454. doi:10.1146/annurev.py.10.090172.002241

    CAS  Article  PubMed  Google Scholar 

  36. McCarthy-Neumann S, Ibáñez I (2012) Tree range expansion may be enhanced by escape from negative plant–soil feedbacks. Ecology 93:2637–2649. doi:10.1890/11-2281.1

    Article  PubMed  Google Scholar 

  37. McGuire KL (2007) Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88:567–574. doi:10.1890/05-1173

    Article  PubMed  Google Scholar 

  38. McIntire EJB, Fajardo A (2009) Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90:46–56

    Article  PubMed  Google Scholar 

  39. McNab WH, Cleland DT, Freeouf JA, Keys JEJ, Nowacki G.J., Carpenter CA (2007) Description of ecological subregions: sections of the conterminous United States. In: U.S. Department of Agriculture FS (ed), vol. Gen. Tech. Report WO-76B, [CD-ROM] edn, Washington, D.C., p 80

  40. Mead R (1966) A relationship between individual plant-spacing and yield. Ann Bot 30:301–309

    Article  Google Scholar 

  41. Midgley MG, Brzostek E, Phillips RP (2015) Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. J Ecol 103:1454–1463. doi:10.1111/1365-2745.12467

    Article  Google Scholar 

  42. Oksanen J et al (2015) vegan: Community Ecology Package

  43. Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–281

    CAS  Article  PubMed  Google Scholar 

  44. Parker GR (1989) Old-growth forests of the central hardwood region. Nat Areas J 9:5–11

    Google Scholar 

  45. Parker GR, Leopold DJ, Eichenberger JK (1985) Tree dynamics in an old-growth, deciduous forest. For Ecol Manage 11:31–57

    Article  Google Scholar 

  46. Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199:41–51. doi:10.1111/nph.12221

    CAS  Article  PubMed  Google Scholar 

  47. Pierce AR, Parker G, Rabenold K (2006) Forest succession in an Oak-Hickory dominated stand during a 40-year period at the Ross Biological Reserve, Indiana. Nat Areas J 26:351–359. doi:10.3375/0885-8608(2006)26[351:FSIAOD]2.0.CO;2

  48. Purves D, Pacala S (2008) Predictive models of forest dynamics. Science 320:1452–1453. doi:10.1126/science.1155359

    CAS  Article  PubMed  Google Scholar 

  49. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492. doi:10.1046/j.1469-8137.2003.00704.x

    Article  Google Scholar 

  50. Reinhart KO, Packer A, Van der Putten WH, Clay K (2003) Plant–soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol Lett 6:1046–1050. doi:10.1046/j.1461-0248.2003.00539.x

    Article  Google Scholar 

  51. Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291. doi:10.1890/02-0298

    Article  Google Scholar 

  52. Rhynsburger D (1973) Analytic delineation of Thiessen polygons. Geogr Anal 5:133–144. doi:10.1111/j.1538-4632.1973.tb01003.x

    Article  Google Scholar 

  53. Runkle JR (2012) Thirty-two years of change in an old-growth Ohio beech–maple forest. Ecology 94:1165–1175. doi:10.1890/11-2199.1

    Article  Google Scholar 

  54. Schmelz DV, Alton AL (1970) Relationship among the forest types of Indiana. Ecology 51:620–629. doi:10.2307/1934041

    Article  Google Scholar 

  55. Schmelz DV, Lindsey AA (1965) Size-class structure of old-growth forests in Indiana. For Sci 11:258–264

    Google Scholar 

  56. Shotola SJ, Weaver GT, Robertson PA, Ashby WC (1992) Sugar maple invasion of an old-growth oak-hickory forest in southwestern Illinois. Am Midl Nat 127:125–138. doi:10.2307/2426328

    Article  Google Scholar 

  57. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press-Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  58. Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16. doi:10.2307/1939377

    Article  Google Scholar 

  59. Van Der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150. doi:10.1111/j.1365-2745.2009.01570.x

    Article  Google Scholar 

  60. Veresoglou SD, Chen B, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62. doi:10.1016/j.soilbio.2011.11.018

    CAS  Article  Google Scholar 

  61. Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. doi:10.1007/s00572-005-0033-6

    CAS  Article  PubMed  Google Scholar 

  62. Wang X, Wiegand T, Hao Z, Li B, Ye J, Lin F (2010) Species associations in an old-growth temperate forest in north-eastern China. J Ecol 98:674–686. doi:10.1111/j.1365-2745.2010.01644.x

    Article  Google Scholar 

  63. Waring BG, Adams R, Branco S, Powers JS (2016) Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytol 209:845–854

    CAS  Article  PubMed  Google Scholar 

  64. Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104:209–229

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to field crew members J. Degler, A. Quebbeman, M. Sheehan, A. Sipes and the dozens of volunteers that helped maintain the IUFDP. Thanks to R. Condit and S. Lao of the Smithsonian Institution for assistance with data curation. Funding for the plot establishment was provided by a National Science Foundation (NSF) Doctoral Dissertation Improvement Grant (1110533) to DJJ and KC, Indiana University Research and Teaching Preserves, Indiana Academy of Science and the Smithsonian Tropical Research Institute. Portions of this work benefited from ForestGEO workshops attended by DJJ (NSF Division of Environmental Biology—1046113 to S. J. Davies).

Author information

Affiliations

Authors

Contributions

DJJ, KC and RPP conceived of the idea. DJJ supervised the data collection, performed the analyses, and wrote the initial draft. All authors wrote and edited the manuscript.

Corresponding author

Correspondence to Daniel J. Johnson.

Additional information

Communicated by Ines Ibanez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 401 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, D.J., Clay, K. & Phillips, R.P. Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia 186, 195–204 (2018). https://doi.org/10.1007/s00442-017-3987-0

Download citation

Keywords

  • Arbuscular mycorrhizae
  • Ectomycorrhizae
  • Oak–hickory forest
  • Pair-correlation function
  • ForestGEO