Skip to main content

Water availability and environmental temperature correlate with geographic variation in water balance in common lizards

Abstract

Water conservation strategies are well documented in species living in water-limited environments, but physiological adaptations to water availability in temperate climate environments are still relatively overlooked. Yet, temperate species are facing more frequent and intense droughts as a result of climate change. Here, we examined variation in field hydration state (plasma osmolality) and standardized evaporative water loss rate (SEWL) of adult male and pregnant female common lizards (Zootoca vivipara) from 13 natural populations with contrasting air temperature, air humidity, and access to water. We found different patterns of geographic variation between sexes. Overall, males were more dehydrated (i.e. higher osmolality) than pregnant females, which likely comes from differences in field behaviour and water intake since the rate of SEWL was similar between sexes. Plasma osmolality and SEWL rate were positively correlated with environmental temperature in males, while plasma osmolality in pregnant females did not correlate with environmental conditions, reproductive stage or reproductive effort. The SEWL rate was significantly lower in populations without access to free standing water, suggesting that lizards can adapt or adjust physiology to cope with habitat dryness. Environmental humidity did not explain variation in water balance. We suggest that geographic variation in water balance physiology and behaviour should be taken account to better understand species range limits and sensitivity to climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Angilletta MJ, Cooper BS, Schuler MS, Boyles JG (2010) The evolution of thermal physiology in endotherms. Front Biosci 26:861–881. doi:10.1093/intimm/dxu021

    Google Scholar 

  2. Belasen A, Brock K, Li B et al (2016) Fine with heat, problems with water: microclimate alters water loss in a thermally adapted insular lizard. Oikos. doi:10.1111/oik.03712

    Google Scholar 

  3. Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42:1–36. doi:10.1016/S0163-7827(02)00028-0

    CAS  Article  PubMed  Google Scholar 

  4. Champagne AM, Munoz-Garcia A, Shtayyeh T et al (2012) Lipid composition of the stratum corneum and cutaneous water loss in birds along an aridity gradient. J Exp Biol 215:4299–4307. doi:10.1242/jeb.077016

    CAS  Article  PubMed  Google Scholar 

  5. Cheung KL, Lafayette RA (2013) Renal physiology of pregnancy. Adv Chronic Kidney Dis 20:209–214. doi:10.1053/j.ackd.2013.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cooke SJ, Sack L, Franklin CE et al (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conserv Physiol 1:1–23. doi:10.1093/conphys/cot001

    Article  Google Scholar 

  7. Cox CL, Cox RM (2015) Evolutionary shifts in habitat aridity predict evaporative water loss across squamate reptiles. Evolution (NY) 69:2507–2516. doi:10.1111/evo.12742

    Article  Google Scholar 

  8. Cryan PM, Wolf BO (2003) Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat, Lasiurus cinereus, during its spring migration. J Exp Biol 206:3381–3390. doi:10.1242/jeb.00574

    Article  PubMed  Google Scholar 

  9. Dauphin-Villemant C, Xavier F (1986) Adrenal activity in the females Lacerta vivipara Jacquin: possible involvement in the success of gestation. In: Assemacher I, Boissin J (eds) Endocrine regulation as adaptive mechanism to environment. CNRS, Paris, pp 241–250

    Google Scholar 

  10. Davis JR, DeNardo DF (2009) Water supplementation affects the behavioral and physiological ecology of gila monsters (Heloderma suspectum) in the sonoran desert. Physiol Biochem Zool 82:739–748. doi:10.1086/605933

    Article  PubMed  Google Scholar 

  11. DeNardo DF, Zubal TE, Hoffman TCM (2004) Cloacal evaporative cooling: a previously undescribed means of increasing evaporative water loss at higher temperatures in a desert ectotherm, the Gila monster Heloderma suspectum. J Exp Biol 207:945–953. doi:10.1242/jeb.00861

    Article  PubMed  Google Scholar 

  12. Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A 105:6668–6672

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Du W (2004) Water exchange of flexible-shelled eggs and its effect on hatchling traits in the Chinese skink, Eumeces chinensis. J Comp Physiol B Biochem Syst Environ Physiol 174:489–493. doi:10.1007/s00360-004-0435-3

    Article  Google Scholar 

  14. Dunkin RC, Wilson D, Way N et al (2013) Climate influences thermal balance and water use in African and Asian elephants: physiology can predict drivers of elephant distribution. J Exp Biol 216:2939–2952. doi:10.1242/jeb.080218

    Article  PubMed  Google Scholar 

  15. Dupoué A, Lourdais O (2014) Relative reproductive effort drives metabolic changes and maternal emaciation during pregnancy in a viviparous snake. J Zool 293:49–56. doi:10.1111/jzo.12116

    Article  Google Scholar 

  16. Dupoué A, Brischoux F, Angelier F et al (2015a) Intergenerational trade-off for water may induce a mother–offspring conflict in favour of embryos in a viviparous snake. Funct Ecol 29:414–422. doi:10.1111/1365-2435.12349

    Article  Google Scholar 

  17. Dupoué A, Stahlschmidt ZR, Michaud B, Lourdais O (2015b) Physiological state influences evaporative water loss and microclimate preference in the snake Vipera aspis. Physiol Behav 144:82–89. doi:10.1016/j.physbeh.2015.02.042

    Article  PubMed  Google Scholar 

  18. Foley C, Pettorelli N, Foley L (2008) Severe drought and calf survival in elephants. Biol Lett 4:541–544. doi:10.1098/rsbl.2008.0370

    Article  PubMed  PubMed Central  Google Scholar 

  19. González-Suárez M, Mugabo M, Decencière B et al (2011) Disentangling the effects of predator body size and prey density on prey consumption in a lizard. Funct Ecol 25:158–165. doi:10.1111/j.1365-2435.2010.01776.x

    Article  Google Scholar 

  20. Guillon M, Guiller G, DeNardo DF, Lourdais O (2014) Microclimate preferences correlate with contrasted evaporative water loss in parapatric vipers at their contact zone. Can J Zool 92:81–86

    Article  Google Scholar 

  21. Hetem RS, Strauss WM, Fick LG et al (2010) Variation in the daily rhythm of body temperature of free-living Arabian oryx (Oryx leucoryx): does water limitation drive heterothermy? J Comp Physiol B Biochem Syst Environ Physiol 180:1111–1119. doi:10.1007/s00360-010-0480-z

    Article  Google Scholar 

  22. Kattan GH, Lillywhite HB (1989) Humidity acclimation and skin permeability in the lizard Anolis carolinensis. Physiol Zool 62:593–606

    Article  Google Scholar 

  23. Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc Natl Acad Sci U S A 106:3835–3840. doi:10.1073/pnas.0808913106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Kennett R, Christian KA (1994) Metabolic depression in estivating long-neck turtles (Chelodina rugosa). Physiol Zool 67:1087–1102

    Article  Google Scholar 

  25. Köhler A, Sadowska J, Olszewska J et al (2011) Staying warm or moist? Operative temperature and thermal preferences of common frogs (Rana temporaria) and effects on locomotion. Herpetol J 21:17–26

    Google Scholar 

  26. Le Galliard J-F, Le Bris M, Clobert J (2003) Timing of locomotor impairment and shift in thermal preferences during gravidity in a viviparous lizard. Funct Ecol 17:877–885

    Article  Google Scholar 

  27. Lillywhite HB (2006) Water relations of tetrapod integument. J Exp Biol 209:202–226. doi:10.1242/jeb.02007

    Article  PubMed  Google Scholar 

  28. Lorenzon P, Clobert J, Oppliger A, John-Alder H (1999) Effect of water constraint on growth rate, activity and body temperature of yearling common lizard (Lacerta vivipara). Oecologia 118:423–430

    Article  PubMed  Google Scholar 

  29. Lorenzon P, Clobert J, Massot M (2001) The contribution of phenotypic plasticity to adaptation in Lacerta vivipara. Evolution (NY) 55:392–404. doi:10.1554/0014-3820(2001)055[0392:TCOPPT]2.0.CO;2

  30. Lorioux S, Lisse H, Lourdais O (2013) Dedicated mothers: predation risk and physical burden do not alter thermoregulatory behaviour of pregnant vipers. Anim Behav 86:401–408. doi:10.1016/j.anbehav.2013.05.031

    Article  Google Scholar 

  31. Lourdais O, Lorioux S, Dupoué A et al (2015) Embryonic water uptake during pregnancy is stage- and fecundity-dependent in the snake Vipera aspis. Comp Biochem Physiol Part A Mol Integr Physiol 189:102–106. doi:10.1016/j.cbpa.2015.07.019

    CAS  Article  Google Scholar 

  32. Marquis O, Massot M, Le Galliard JF (2008) Intergenerational effects of climate generate cohort variation in lizard reproductive performance. Ecology 89:2575–2583. doi:10.1890/07-1211.1

    Article  PubMed  Google Scholar 

  33. Mautz WJ (1982) Patterns of evaporative water loss. In: Gans C, Pough FH (eds) Biology of the Reptilia. Academic Press, London, pp 443–481

    Google Scholar 

  34. Mazerolle MJ (2016) AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c)

  35. McKechnie AE, Wolf BO (2010) Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol Lett 6:253–256. doi:10.1098/rsbl.2009.0702

    Article  PubMed  Google Scholar 

  36. Meylan S, Dufty AM, Clobert J (2003) The effect of transdermal corticosterone application on plasma corticosterone levels in pregnant Lacerta vivipara. Comp Biochem Physiol Part A Mol Integr Physiol 134:497–503

    CAS  Article  Google Scholar 

  37. Miles DB, Sinervo B, Frankino WA (2000) Reproductive burden, locomotor performance, and the cost of reproduction in free ranging lizards. Evolution (NY) 54:1386–1395. doi:10.1554/0014-3820(2000)054[1386:Rblpat]2.0.Co;2

  38. Moeller KT, Butler MW, DeNardo DF (2013) The effect of hydration state and energy balance on innate immunity of a desert reptile. Front Zool 10:23–33. doi:10.1186/1742-9994-10-23

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moen DS, Winne CT, Reed RN (2005) Habitat-mediated shifts and plasticity in the evaporative water loss rates of two congeneric pit vipers (Squamata, Viperidae, Agkistrodon). Evol Ecol Res 7:759–766

    Google Scholar 

  40. Muir TJ, Costanzo JP, Lee RE (2007) Osmotic and metabolic responses to dehydration and urea-loading in a dormant, terrestrially hibernating frog. J Comp Physiol B 177:917–926. doi:10.1007/s00360-007-0190-3

    CAS  Article  PubMed  Google Scholar 

  41. Peterman WE, Semlitsch RD (2014) Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics. Oecologia 176:357–369

    CAS  Article  PubMed  Google Scholar 

  42. Peterson CC (2002) Temporal, population, and sexual variation in hematocrit of free-living desert tortoises: correlational tests of causal hypotheses. Can J Zool 80:461–470. doi:10.1139/Z02-021

    Article  Google Scholar 

  43. Pilorge T, Xavier F, Barbault R (1983) Variations in litter size and reproductive effort within and between some populations of Lacerta vivipara. Ecography (Cop) 6:381–382

    Article  Google Scholar 

  44. Pinheiro J, Bates D, DebRoy S et al (2016) nlme: Linear and nonlinear mixed effects models

  45. Rezende EL, Diniz-Filho JAF (2012) Phylogenetic analyses: comparing species to infer adaptations and physiological mechanisms. Compr Physiol 2:639–674. doi:10.1002/cphy.c100079

    PubMed  Google Scholar 

  46. Rozen-Rechels D, van Beest FM, Richard E et al (2015) Density-dependent, central-place foraging in a grazing herbivore: competition and tradeoffs in time allocation near water. Oikos 124:1142–1150. doi:10.1111/oik.02207

    Article  Google Scholar 

  47. Rutschmann A, Miles DB, Le Galliard JF et al (2016) Climate and habitat interact to shape the thermal reaction norms of breeding phenology across lizard populations. J Anim Ecol 85:457–466. doi:10.1111/1365-2656.12473

    Article  PubMed  Google Scholar 

  48. Schultz TJ, Webb JK, Christian KA (2008) The physiological cost of pregnancy in a tropical viviparous snake. Copeia 2008:637–642. doi:10.1643/CP-06-182

    Article  Google Scholar 

  49. Secor SM, Stein ED, Diamond J (1994) Rapid upregulation of snake intestine in response to feeding: a new model of intestinal adaptation. Am J Physiol 266:G695–G705

    CAS  PubMed  Google Scholar 

  50. Shine R (2006) Is increased maternal basking an adaptation or a pre-adaptation to viviparity in lizards? J Exp Zool Part A Comp Exp Biol 305A:524–535

    Article  Google Scholar 

  51. Somero GN (2011) Comparative physiology: a “crystal ball” for predicting consequences of global change. Am J Physiol Regul Integr Comp Physiol 301:R1–R14. doi:10.1152/ajpregu.00719.2010

    CAS  Article  PubMed  Google Scholar 

  52. Speakman JR, Ergon T, Cavanagh R et al (2003) Resting and daily energy expenditures of free-living field voles are positively correlated but reflect extrinsic rather than intrinsic effects. Proc Natl Acad Sci USA 100:14057–14062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Stachenfeld NS, Splenser AE, Calzone WL et al (2001) Sex differences in osmotic regulation of AVP and renal sodium handling. J Appl Physiol 91:1893–1901

    CAS  PubMed  Google Scholar 

  54. Taylor BE, Scott DE, Gibbons JW (2006) Catastrophic reproductive failure, terrestrial survival, and persistence of the marbled salamander. Conserv Biol 20:792–801. doi:10.1111/j.1523-1739.2005.00321.x

    Article  PubMed  Google Scholar 

  55. Tieleman BI, Williams JB, Buschur ME (2002) Physiological adjustments to arid and mesic environments in larks (Alaudidae). Physiol Biochem Zool 75:305–313. doi:10.1086/341998

    Article  PubMed  Google Scholar 

  56. Tieleman BI, Williams JB, Bloomer P (2003) Adaptation of metabolism and evaporative water loss along an aridity gradient. Proc R Soc B Biol Sci 270:207–214. doi:10.1098/rspb.2002.2205

    Article  Google Scholar 

  57. Tingley R, Greenlees MJ, Shine R (2012) Hydric balance and locomotor performance of an anuran (Rhinella marina) invading the Australian arid zone. Oikos 121:1959–1965. doi:10.1111/j.1600-0706.2012.20422.x

    Article  Google Scholar 

  58. Todgham AE, Stillman JH (2013) Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr Comp Biol 53:539–544. doi:10.1093/icb/ict086

    Article  PubMed  Google Scholar 

  59. Van Damme R, Bauwens D, Verheyen RF (1986) Selected body temperatures in the lizard Lacerta vivipara: variation within and between populations. J Therm Biol 11:219–222

    Article  Google Scholar 

  60. Van Sant MJ, Oufiero CE, Muñoz-Garcia A et al (2012) A phylogenetic approach to total evaporative water loss in mammals. Physiol Biochem Zool 85:526–532. doi:10.1086/667579

    Article  PubMed  Google Scholar 

  61. Webber MM, Gibbs AG, Rodríguez-Robles JA (2015) Hot and not-so-hot females: reproductive state and thermal preferences of female Arizona Bark Scorpions (Centruroides sculpturatus). J Evol Biol 28:368–375. doi:10.1111/jeb.12569

    CAS  Article  PubMed  Google Scholar 

  62. Webster MD, Campbell GS, King JR (1985) Cutaneous resistance to water-vapor diffusion in pigeons and the role of the plumage. Physiol Zool 58:58–70

    Article  Google Scholar 

  63. Weldon CW, Daniels SR, Clusella-Trullas S, Chown SL (2013) Metabolic and water loss rates of two cryptic species in the African velvet worm genus Opisthopatus (Onychophora). J Comp Physiol B Biochem Syst Environ Physiol 183:323–332. doi:10.1007/s00360-012-0715-2

    CAS  Article  Google Scholar 

  64. Whitehead FJ, Couper RTL, Moore L et al (1996) Dehydration deaths in infants and young children. Am J Forensic Med Pathol 17:73–78

    CAS  Article  PubMed  Google Scholar 

  65. Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46. doi:10.1016/j.tree.2005.10.018

    Article  PubMed  Google Scholar 

  66. Williams JB, Muñoz-Garcia A, Ostrowski S, Tieleman BI (2004) A phylogenetic analysis of basal metabolism, total evaporative water loss, and life-history among foxes from desert and mesic regions. J Comp Physiol B Biochem Syst Environ Physiol 174:29–39. doi:10.1007/s00360-003-0386-0

    CAS  Article  Google Scholar 

  67. Williams JB, Muñoz-garcia A, Champagne A (2012) Climate change and cutaneous water loss of birds. J Exp Biol 215:1053–1060. doi:10.1242/jeb.054395

    CAS  Article  PubMed  Google Scholar 

  68. Woods HA, Smith JN (2010) Universal model for water costs of gas exchange by animals and plants. Proc Natl Acad Sci U S A 107:8469–8474. doi:10.1073/pnas.0905185107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Wright CD, Jackson ML, DeNardo DF (2013) Meal consumption is ineffective at maintaining or correcting water balance in a desert lizard, Heloderma suspectum. J Exp Biol 216:1439–1447. doi:10.1242/jeb.080895

    Article  PubMed  Google Scholar 

  70. Zylstra ER, Steidl RJ, Jones CA, Averill-Murray RC (2013) Spatial and temporal variation in survival of a rare reptile: a 22-year study of Sonoran desert tortoises. Oecologia 173:107–116. doi:10.1007/s00442-012-2464-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pauline Blaimont, Pauline Dufour, Laurène Duhalde, Amélie Faure, Julia Rense, and Qiang Wu for their help with fieldwork. We also thank Clotilde Biard for lending us some of the loggers. We are grateful to the ‘Office Nationale des Forêts’, the ‘Parc National des Cévennes’, and the regions Auvergne, Rhône Alpes and Languedoc Roussillon for allowing us to sample lizards. This study was funded by the Centre National de la Recherche Scientifique (CNRS) the Agence Nationale de la Recherche (ANR-13-JSV7-0011-01 to SM) and the National Science Foundation (NSF-EF1241848 to DBM).

Author information

Affiliations

Authors

Contributions

AD, AR, JFLG, DBM, JC, and SM conceived the ideas and designed methodology; AD, AR, JFLG, DBM, JC, and SM captured lizards; AD and AR collected water loss data; AD, GAB, and DD collected osmolality data; AD analysed the data; AD and AR led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Andréaz Dupoué.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Additional information

Communicated by Hannu J. Ylonen.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dupoué, A., Rutschmann, A., Le Galliard, J.F. et al. Water availability and environmental temperature correlate with geographic variation in water balance in common lizards. Oecologia 185, 561–571 (2017). https://doi.org/10.1007/s00442-017-3973-6

Download citation

Keywords

  • Ectotherm
  • Osmolality
  • Pregnancy
  • Temperature
  • Water loss