Spatial and temporal variation in the range-wide cyclic dynamics of greater sage-grouse

Abstract

Periodic changes in abundance, or population cycles, are common in a variety of species and is one of the most widely studied ecological phenomena. The strength of, and synchrony between population cycles can vary across time and space and understanding these patterns can provide insight into the mechanisms generating population cycles and their variability within and among species. Here, we used wavelet and spectral analysis on a range-wide dataset of abundance for the greater sage-grouse (Centrocercus urophasianus) to test for regional differences in temporal cyclicity. Overall, we found that most populations (11 of 15) were cyclic at some point in a 50-year time series (1965–2015), but the patterns varied over both time and space. Several peripheral populations demonstrated amplitude dampening or loss of cyclicity following population lows in the mid-1990s. Populations through the core of the range in the Great and Wyoming Basins had more consistent cyclic dynamics, but period length appeared to shorten from 10–12 to 6–8 years. In one time period, where cyclicity was greatest overall, increased pairwise population synchrony was correlated with cycle intensity. Our work represents a comprehensive range-wide assessment of cyclic dynamics and revealed substantial variation in temporal and spatial trends of cyclic dynamics across populations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Atkinson PW, Austin GE, Rehfisch MM et al (2006) Identifying declines in waterbirds: the effects of missing data, population variability and count period on the interpretation of long-term survey data. Biol Conserv 130:549–559

    Article  Google Scholar 

  2. Berryman AA (1996) What causes population cycles of forest Lepidoptera? Trends Ecol Evol 11:28–32

    CAS  Article  PubMed  Google Scholar 

  3. Bierman S, Fairbairn J, Petty S et al (2006) Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.). Am Nat 167:583–590

    Article  PubMed  Google Scholar 

  4. Bjornstad ON (2000) Cycles and synchrony: two historical “experiments” and one experience. J Anim Ecol 69:869–873

    Article  Google Scholar 

  5. Bjørnstad ON, Falck W, Stenseth NC (1995) A geographic gradient in small rodent density fluctuations: a statistical modelling approach. Proc R Soc B Biol Sci 262:127–133

    Article  Google Scholar 

  6. Bjørnstad ON, Grenfell BT (2001) Noisy clockwork: time series analysis of population fluctuations in animals. Science 293:638–643

    Article  PubMed  Google Scholar 

  7. Bjørnstad ON, Ims RA, Lambin X (1999) Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol Evol 14:427–432

    Article  PubMed  Google Scholar 

  8. Boutin S, Krebs CJ, Boonstra R et al (1995) Population changes of the vertebrate community during a snowshoe hare cycle in Canada’s boreal forest. Oikos 74:69–80

    Article  Google Scholar 

  9. Brommer JE, Pietiainen H, Ahola K et al (2010) The return of the vole cycle in southern Finland refutes the generality of the loss of cycles through “climatic forcing”. Glob Chang Biol 16:577–586

    Article  Google Scholar 

  10. Cattadori IM, Hudson PJ (1999) Temporal dynamics of grouse populations at the southern edge of their distribution. Ecography 22:374–383

    Article  Google Scholar 

  11. Cattadori IM, Hudson PJ (2000) Are grouse populations unstable at the southern end of their range? Wildl Biol 6:213–218

    Google Scholar 

  12. Cazelles B, Chavez M, Berteaux D et al (2008) Wavelet analysis of ecological time series. Oecologia 156:287–304

    Article  PubMed  Google Scholar 

  13. Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J Agric Biol Environ Stat 7:361–372

    Article  Google Scholar 

  14. Connelly JW, Knick ST, Schroeder MA, Stiver SJ (2004) Conservation assessment of greater sage-grouse and sagebrush habitats. West Assoc Fish Wildl Agencies, Cheyenne, Wyoming, USA, p 610

    Google Scholar 

  15. Cornulier T, Yoccoz NG, Bretagnolle V et al (2013) Europe-wide dampening of population cycles in keystone herbivores. Science 340:63–66

    CAS  Article  PubMed  Google Scholar 

  16. Doherty KE, Evans JS, Coates PS et al (2016) Importance of regional variation in conservation planning: a rangewide example of the greater sage-grouse. Ecosphere 7:e01462

    Article  Google Scholar 

  17. Ecke F, Christensen P, Rentz R et al (2010) Landscape structure and the long-term decline of cyclic grey-sided voles in Fennoscandia. Landsc Ecol 25:551–560

    Article  Google Scholar 

  18. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    CAS  Article  PubMed  Google Scholar 

  19. Esper J, Buntgen U, Frank DC et al (2007) 1200 years of regular outbreaks in alpine insects. Proc R Soc B Biol Sci 274:671–679

    Article  Google Scholar 

  20. Fedy BC, Aldridge CL (2011) The importance of within-year repeated counts and the influence of scale on long-term monitoring of sage-grouse. J Wildl Manag 75:1022–1033

    Article  Google Scholar 

  21. Fedy BC, Doherty KE (2011) Population cycles are highly correlated over long time series and large spatial scales in two unrelated species: greater sage-grouse and cottontail rabbits. Oecologia 165:915–924

    Article  PubMed  Google Scholar 

  22. Fedy BC, Doherty KE, Aldridge CL et al (2014) Habitat prioritization across large landscapes, multiple seasons, and novel areas: an example using greater sage-grouse in Wyoming. Wildl Monogr 190:1–39

    Article  Google Scholar 

  23. Fewster RM, Buckland ST, Siriwardena GM et al (2000) Analysis of population trends for farmland birds using generalized additive models. Ecology 81:1970–1984

    Article  Google Scholar 

  24. Fox JW, Vasseur DA, Hausch S, Roberts J (2011) Phase locking, the Moran effect and distance decay of synchrony: experimental tests in a model system. Ecol Lett 14:163–168

    Article  PubMed  Google Scholar 

  25. Garton E, Connelly J (2011) Greater sage-grouse population dynamics and probability of persistence. Stud Avian Biol 38:293–381

    Google Scholar 

  26. Garton EO, Connelly JW, Horne JS et al (2011) Greater sage-grouse population dynamics and probability of persistence. In: Knick ST, Connelly JW (eds) Greater sage-grouse: ecology and conservation of a landscape species and its habitats. Studies in Avian Biology, vol 38. University of California Press, Berkeley

  27. Goodwin B, Fahrig L (2002) Effect of landscape structure on the movement behaviour of a specialized goldenrod beetle, Trirhabda borealis. Can J Zool 80:24–35

    Article  Google Scholar 

  28. Hanski I, Hanssont L, Henttonent H (1991) Specialist predators, generalist predators, and the microtine rodent cycle. J Anim Ecol 6017878:353–367

    Article  Google Scholar 

  29. Hastings A (2004) Transients: the key to long-term ecological understanding? Trends Ecol Evol 19:39–45

    Article  PubMed  Google Scholar 

  30. Haydon DT, Shaw DJ, Cattadori IM et al (2002) Analysing noisy time-series: describing regional variation in the cyclic dynamics of red grouse. Proc R Soc B Biol Sci 269:1609–1617

    Article  Google Scholar 

  31. Henden JA, Ims RA, Yoccoz NG (2009) Nonstationary spatio-temporal small rodent dynamics: evidence from long-term Norwegian fox bounty data. J Anim Ecol 78:636–645

    Article  PubMed  Google Scholar 

  32. Ims RA, Henden J-A, Killengreen ST (2008) Collapsing population cycles. Trends Ecol Evol 23:79–86

    Article  PubMed  Google Scholar 

  33. Inchausti P, Ginzburg LR (2009) Maternal effects mechanism of population cycling: a formidable competitor to the traditional predator-prey view. Philos Trans R Soc Lond B Biol Sci 364:1117–1124

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jenouvrier S, Weimerskirch H, Barbraud C et al (2005) Evidence of a shift in the cyclicity of Antarctic seabird dynamics linked to climate. Proc Biol Sci 272:887–895

    Article  PubMed  PubMed Central  Google Scholar 

  35. Johnson DM, Büntgen U, Frank DC et al (2010) Climatic warming disrupts recurrent Alpine insect outbreaks. Proc Natl Acad Sci USA 107:20576–20581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Kausrud KL, Mysterud A, Steen H et al (2008) Linking climate change to lemming cycles. Nature 456:93–97

    CAS  Article  PubMed  Google Scholar 

  37. Keitt TH (2014) mvcwt: wavelet analysis of multiple time series. R package version 1.3. https://CRAN.R-project.org/package=mvcwt

  38. Kendall B, Briggs C, Murdoch W (1999) Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80:1789–1805

    Article  Google Scholar 

  39. Kendall BE, Prendergast J, Bjørnstad ON (1998) The macroecology of population dynamics: taxonomic and biogeographic patterns in population cycles. Ecol Lett 1:160–164

    Article  Google Scholar 

  40. Klemola T, Tanhuanpa M, Korpima E, Ruohoma K (2002) Specialist and generalist natural enemies as an explanation for geographical gradients in population cycles of northern herbivores. Oikos 99:83–94

    Article  Google Scholar 

  41. Knick ST, Hanser SE, Preston KL (2013) Modeling ecological minimum requirements for distribution of greater sage-grouse leks: implications for population connectivity across their western range, U.S.A. Ecol Evol 3:1539–1551

    Article  PubMed  PubMed Central  Google Scholar 

  42. Korpela K, Delgado M, Henttonen H et al (2013) Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob Chang Biol 19:697–710

    Article  PubMed  Google Scholar 

  43. Liebhold A, Koenig WD, Bjørnstad ON (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol Syst 35:467–490

    Article  Google Scholar 

  44. Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39:447–462

    Article  Google Scholar 

  45. Ludwig GX, Alatalo RV, Helle P et al (2006) Short- and long-term population dynamical consequences of asymmetric climate change in black grouse. Proc Biol Sci 273:2009–2016

    Article  PubMed  PubMed Central  Google Scholar 

  46. Martínez-Padilla J, Redpath SM, Zeineddine M, Mougeot F (2014) Insights into population ecology from long-term studies of red grouse Lagopus lagopus scoticus. J Anim Ecol 83:85–98

    Article  PubMed  Google Scholar 

  47. Moss AR, Watson A (1996) Experimental prevention of a population cycle in red grouse. Ecology 77:1512–1530

    Article  Google Scholar 

  48. Moss R, Watson A (2001) Population cycles in birds of the grouse family (Tetraonidae). In: Caswell H (ed) Advances in ecological research. Academic, San Diego, pp 53–111

    Google Scholar 

  49. Murray DL, Steury TD, Roth JD (2008) Assessment of Canada lynx research and conservation needs in the southern range: another kick at the cat. J Wildl Manag 72:1463

    Article  Google Scholar 

  50. Peltonen M, Liebhold AM, Bjørnstad ON, Williams DW (2002) Spatial synchrony in forest insect outbreaks: roles of regional stochasticity and dispersal. Ecology 83:3120–3129

    Article  Google Scholar 

  51. Pomara LY, Zuckerberg B (2017) Climate variability drives population cycling and synchrony. Divers Distrib 23:421–434

    Article  Google Scholar 

  52. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes example book (C++). Cambridge University Press, Cambridge

    Google Scholar 

  53. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ 

  54. Redpath SM, Mougeot F, Leckie FM et al (2006) Testing the role of parasites in driving the cyclic population dynamics of a gamebird. Ecol Lett 9:410–418

    Article  PubMed  Google Scholar 

  55. Rouyer T, Fromentin JM, Stenseth NC, Cazelles B (2008) Analysing multiple time series and extending significance testing in wavelet analysis. Mar Ecol Prog Ser 359:11–23

    Article  Google Scholar 

  56. Row JR, Wilson PJ, Murray DL (2014) Anatomy of a population cycle: the role of density dependence and demographic variability on numerical instability and periodicity. J Anim Ecol 83:800–812

    Article  PubMed  Google Scholar 

  57. Royama T (1992) Analytical population dynamics. Chapman & Hall, London

    Book  Google Scholar 

  58. Ruf T (1999) The Lomb–Scargle periodogram in biological rhythm research: analysis of incomplete and unequally spaced time-series. Biol Rhythm Res 30:178–201

    Article  Google Scholar 

  59. Scargle JD (1982) Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853

    Article  Google Scholar 

  60. Schroeder M, Aldridge C, Apa A et al (2004) Distribution of sage-grouse in North America. Condor 106:363–376

    Article  Google Scholar 

  61. Shaw DJ, Haydon DT, Cattadori IM et al (2004) The shape of red grouse cycles. J Anim Ecol 73:767–776

    Article  Google Scholar 

  62. Strann KB, Yoccoz NG, Ims RA (2002) Is the heart of Fennoscandian rodent cycle still beating? A 14-year study of small mammals and Tengmalm’s owls in northern Norway. Ecography 25:81–87

    Article  Google Scholar 

  63. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  64. Turchin P, Batzli G (2001) Availability of food and the population dynamics of arvicoline rodents. Ecology 82:1521–1534

    Article  Google Scholar 

  65. Vasseur DA, Fox JW (2009) Phase-locking and environmental fluctuations generate synchrony in a predator–prey community. Nature 460:1007–1010

    CAS  Article  PubMed  Google Scholar 

  66. Western Association of Fish and Wildlife Agencies (2015) Greater sage-grouse population trends: an analysis of lek count databases 1965–2015, Cheyenne, Wyoming, USA, p 55

    Google Scholar 

  67. Williams CK, Ives AR, Applegate RD, Ripa J (2004) The collapse of cycles in the dynamics of North American grouse populations. Ecol Lett 7:1135–1142

    Article  Google Scholar 

Download references

Acknowledgements

We thank San Stiver (WAFWA) for coordinating the collection of lek data from State agencies and Tom Remington (WAFWA) for organizing, proofing, and providing a lek abundance database.

Author information

Affiliations

Authors

Contributions

JRR and BCF conceived and designed the study design and analyses. JRR analyzed the data and wrote the manuscript. BCF provided editorial advice throughout the development of the manuscript.

Corresponding author

Correspondence to Jeffrey R. Row.

Additional information

Communicated by Ola Olsson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1653 kb)

Supplementary material 2 (DOCX 311 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Row, J.R., Fedy, B.C. Spatial and temporal variation in the range-wide cyclic dynamics of greater sage-grouse. Oecologia 185, 687–698 (2017). https://doi.org/10.1007/s00442-017-3970-9

Download citation

Keywords

  • Greater sage-grouse
  • Population cycles
  • Population dynamics
  • Population synchrony
  • Wavelet analysis