Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition

Abstract

Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we simultaneously assessed the effects of three pathways—root litter quality, soil biota, and soil abiotic conditions—on the relationships between plant diversity (in terms of species richness and the presence/absence of grasses and legumes) and root decomposition using structural equation modeling. Our final structural equation model explained 70% of the variation in root mass loss. However, different measures of plant diversity included in our model operated via different pathways to alter root mass loss. Plant species richness had a negative effect on root mass loss. This was partially due to increased Oribatida abundance, but was weakened by enhanced root potassium (K) concentration in more diverse mixtures. Equally, grass presence negatively affected root mass loss. This effect of grasses was mostly mediated via increased root lignin concentration and supported via increased Oribatida abundance and decreased root K concentration. In contrast, legume presence showed a net positive effect on root mass loss via decreased root lignin concentration and increased root magnesium concentration, both of which led to enhanced root mass loss. Overall, the different measures of plant diversity had contrasting effects on root decomposition. Furthermore, we found that root chemistry and soil biota but not root morphology or soil abiotic conditions mediated these effects of plant diversity on root decomposition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. A’Bear AD, Jones TH, Boddy L (2014) Size matters: what have we learnt from microcosm studies of decomposer fungus–invertebrate interactions? Soil Biol Biochem 78:274–283

    Article  CAS  Google Scholar 

  2. Abrahamson WG, Caswell H (1982) On the comparative allocations of biomass, energy, and nutrients in plants. Ecology 63:982–991

    Article  Google Scholar 

  3. Aulen M, Shipley B, Bradley R (2012) Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits. Ann Bot 109:287–297

    CAS  PubMed  Article  Google Scholar 

  4. Austin AT, Ballaré CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc Natl Acad Sci 107:4618–4622

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Balvanera P, Pfisterer AB, Buchmann N et al (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    PubMed  Article  Google Scholar 

  6. Baxendale C, Orwin KH, Poly F et al (2014) Are plant–soil feedback responses explained by plant traits? New Phytol 204:408–423

    PubMed  Article  Google Scholar 

  7. Beck T, Joergensen RG, Kandeler E et al (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032

    CAS  Article  Google Scholar 

  8. Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration, 2nd edn. Springer, Berlin

    Google Scholar 

  9. Birouste M, Kazakou E, Blanchard A, Roumet C (2012) Plant traits and decomposition: are the relationships for roots comparable to those for leaves? Ann Bot 109:463–472

    PubMed  Article  Google Scholar 

  10. Bontti EE, Decant JP, Munson SM et al (2009) Litter decomposition in grasslands of Central North America (US Great Plains). Glob Change Biol 15:1356–1363

    Article  Google Scholar 

  11. Burnham KP, Anderson DR (2007) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science and Business Media, New York

    Google Scholar 

  12. Butenschoen O, Scheu S, Eisenhauer N (2011) Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biol Biochem 43:1902–1907

    CAS  Article  Google Scholar 

  13. Cardinale BJ, Matulich KL, Hooper DU et al (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592

    PubMed  Article  Google Scholar 

  14. Cardon ZG, Whitbeck JL (2011) The rhizosphere: an ecological perspective. Elsevier Academic Press, Burlington

    Google Scholar 

  15. Catovsky S, Bradford MA, Hector A (2002) Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97:443–448

    CAS  Article  Google Scholar 

  16. Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology, 2nd edn. Springer-Verlag New York, Inc., New York

    Google Scholar 

  17. Chen H, Harmon ME, Griffiths RP, Hicks W (2000) Effects of temperature and moisture on carbon respired from decomposing woody roots. For Ecol Manag 138:51–64

    Article  Google Scholar 

  18. Chen H, Harmon ME, Sexton J, Fasth B (2002) Fine-root decomposition and N dynamics in coniferous forests of the Pacific Northwest, USA. Can J For Res 32:320–331

    Article  Google Scholar 

  19. Chen H, Mommer L, van Ruijven J et al (2017) Plant species richness negatively affects root decomposition in grasslands. J Ecol 105:209–218

    CAS  Article  Google Scholar 

  20. Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier Academic Press, Burlington

    Google Scholar 

  21. Cong W-F, Hoffland E, Li L et al (2015) Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant Soil 391:399–411

    CAS  Article  Google Scholar 

  22. Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114

    Article  Google Scholar 

  23. Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    PubMed  Article  Google Scholar 

  24. Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113

    PubMed  Article  Google Scholar 

  25. de Graaff M-A, Schadt CW, Rula K et al (2011) Elevated CO2 and plant species diversity interact to slow root decomposition. Soil Biol Biochem 43:2347–2354

    Article  CAS  Google Scholar 

  26. Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  27. Ebeling A, Meyer ST, Abbas M et al (2014) Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS One 9:e106529

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. Eisenhauer N, Bessler H, Engels C et al (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496

    CAS  PubMed  Article  Google Scholar 

  29. Eisenhauer N, Milcu A, Sabais AC et al (2011a) Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS One 6:e16055

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Eisenhauer N, Yee K, Johnson EA et al (2011b) Positive relationship between herbaceous layer diversity and the performance of soil biota in a temperate forest. Soil Biol Biochem 43:462–465

    CAS  Article  Google Scholar 

  31. Eisenhauer N, Reich PB, Isbell F (2012) Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. Ecology 93:2227–2240

    PubMed  Article  Google Scholar 

  32. Eisenhauer N, Dobies T, Cesarz S et al (2013) Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc Natl Acad Sci 110:6889–6894

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Eisenhauer N, Lanoue A, Strecker T et al (2017) Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep 7:44641

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Fabian J, Zlatanovic S, Mutz M, Premke K (2017) Fungal–bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality. ISME J 11:415–425

    CAS  PubMed  Article  Google Scholar 

  35. Fornara DA, Tilman D, Hobbie SE (2009) Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. J Ecol 97:48–56

    CAS  Article  Google Scholar 

  36. Freschet GT, Cornwell WK, Wardle DA et al (2013) Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide. J Ecol 101:943–952

    CAS  Article  Google Scholar 

  37. Gastine A, Scherer-Lorenzen M, Leadley PW (2003) No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Appl Soil Ecol 24:101–111

    Article  Google Scholar 

  38. Gessner MO, Swan CM, Dang CK et al (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    PubMed  Article  Google Scholar 

  39. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge

    Google Scholar 

  40. Gubsch M, Buchmann N, Schmid B et al (2011) Differential effects of plant diversity on functional trait variation of grass species. Ann Bot 107:157–169

    CAS  PubMed  Article  Google Scholar 

  41. Guiz J, Hillebrand H, Borer ET et al (2016) Long-term effects of plant diversity and composition on plant stoichiometry. Oikos 125:613–621

    CAS  Article  Google Scholar 

  42. Hansen RA, Coleman DC (1998) Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Appl Soil Ecol 9:17–23

    Article  Google Scholar 

  43. Harrell FE Jr, Dupont C et al (2016) Hmisc: Harrell miscellaneous. https://CRAN.R-project.org/package=Hmisc

  44. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  45. Hector A, Beale AJ, Minns A et al (2000) Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90:357–371

    Article  Google Scholar 

  46. Hedley MJ, Stewart JWB, Bs Chauhan (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    CAS  Article  Google Scholar 

  47. Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513

    PubMed  Article  Google Scholar 

  48. Hoffmann K, Bivour W, Früh B et al (2014) Klimauntersuchungen in Jena für die Anpassung an den Klimawandel und seine erwarteten Folgen. Deutscher Wetterdienst, Offenbach am Main

    Google Scholar 

  49. Howell RK (1987) Rhizobium induced mineral uptake in peanut tissues. J Plant Nutr 10:1297–1305

    CAS  Article  Google Scholar 

  50. Iiyama K, Wallis AFA (1988) An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Sci Technol 22:271–280

    CAS  Article  Google Scholar 

  51. Iiyama K, Wallis AFA (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51:145–161

    CAS  Article  Google Scholar 

  52. Jackson RB, Canadell J, Ehleringer JR et al (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    CAS  PubMed  Article  Google Scholar 

  53. Joergensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169:295–309

    CAS  Article  Google Scholar 

  54. Joo SJ, Yim MH, Nakane K (2006) Contribution of microarthropods to the decomposition of needle litter in a Japanese cedar (Cryptomeria japonica D. Don) plantation. For Ecol Manag 234:192–198

    Article  Google Scholar 

  55. Kaspari M, Yanoviak SP, Dudley R et al (2009) Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. Proc Natl Acad Sci USA 106:19405–19409

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Kempson D, Lloyd M, Ghelardi R (1963) A new extractor for woodland litter. Pedobiologia 3:1–21

    Google Scholar 

  57. Kline RB (2005) Principles and practice of structural equation modeling, 2nd edn. Guilford Press, New York

    Google Scholar 

  58. Kramer C, Trumbore S, Fröberg M et al (2010) Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol Biochem 42:1028–1037

    CAS  Article  Google Scholar 

  59. Kuchenbuch R, Claassen N, Jungk A (1986) Potassium availability in relation to soil moisture. Plant Soil 95:233–243

    CAS  Article  Google Scholar 

  60. Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH (eds) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison

    Google Scholar 

  61. Lange M, Eisenhauer N, Sierra CA et al (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:1–8. doi:10.1038/ncomms7707

    Google Scholar 

  62. Leimer S, Oelmann Y, Wirth C, Wilcke W (2015) Time matters for plant diversity effects on nitrate leaching from temperate grassland. Agric Ecosyst Environ 211:155–163

    CAS  Article  Google Scholar 

  63. Li X, Han S, Zhang Y (2007) Foliar decomposition in a broadleaf-mixed Korean pine (Pinus koraiensis Sieb. Et Zucc) plantation forest: the impact of initial litter quality and the decomposition of three kinds of organic matter fraction on mass loss and nutrient release rates. Plant Soil 295:151–167

    CAS  Article  Google Scholar 

  64. Lipowsky A, Roscher C, Schumacher J et al (2015) Plasticity of functional traits of forb species in response to biodiversity. Perspect Plant Ecol Evol Syst 17:66–77

    Article  Google Scholar 

  65. Liu P, Huang J, Han X, Sun OJ (2009) Litter decomposition in semiarid grassland of Inner Mongolia, China. Rangel Ecol Manag 62:305–313

    Article  Google Scholar 

  66. Ma Z, Chen HYH (2016) Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis. Glob Ecol Biogeogr 25:1387–1396

    Article  Google Scholar 

  67. Makkonen M, Berg MP, Handa IT et al (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041

    PubMed  Article  Google Scholar 

  68. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press Limited, London

    Google Scholar 

  69. Mommer L, Visser E, PrometheusWiki contributors (2011) Root distribution in soils I. Root core sampling and destructive pot harvests. Prometheus Wiki, CSIRO Publishing, Clayton South

    Google Scholar 

  70. Mommer L, Padilla FM, van Ruijven J et al (2015) Diversity effects on root length production and loss in an experimental grassland community. Funct Ecol 29:1560–1568

    Article  Google Scholar 

  71. Moore JC, McCann K, de Ruiter PC (2005) Modeling trophic pathways, nutrient cycling, and dynamic stability in soils. Pedobiologia 49:499–510

    CAS  Article  Google Scholar 

  72. Moreira-Vilar FC, de Cássia Siqueira-Soares R, Finger-Teixeira A et al (2014) The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than klason and thioglycolic acid methods. PLoS One 9:e110000

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. Moura JCMS, Bonine CAV, De Oliveira Fernandes Viana J et al (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    CAS  PubMed  Article  Google Scholar 

  74. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    CAS  Article  Google Scholar 

  75. Nicolai V (1988) Phenolic and mineral content of leaves influences decomposition in European forest ecosystems. Oecologia 75:575–579

    PubMed  Article  Google Scholar 

  76. Niklaus PA, Kandeler E, Leadley PW et al (2001) A link between plant diversity, elevated CO2 and soil nitrate. Oecologia 127:540–548

    PubMed  Article  Google Scholar 

  77. Niklaus PA, Le Roux X, Poly F et al (2016) Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide. Oecologia 181:919–930

    PubMed  Article  Google Scholar 

  78. Oelmann Y, Buchmann N, Gleixner G et al (2011) Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: Development in the first 5 years after establishment. Glob Biogeochem Cycles 25:GB2014

    Article  CAS  Google Scholar 

  79. Perakis SS, Matkins JJ, Hibbs DE (2012) Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter. Ecosphere 3:1–12

    Article  Google Scholar 

  80. Peverill KI, Sparrow LA, Reuter DJ (1999) Soil analysis: an interpretation manual. CSIRO Publishing, Collingwood

    Google Scholar 

  81. Poorter H, Niklas KJ, Reich PB et al (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    CAS  PubMed  Article  Google Scholar 

  82. Prieto I, Stokes A, Roumet C (2016) Root functional parameters predict fine root decomposability at the community level. J Ecol 104:725–733

    CAS  Article  Google Scholar 

  83. Prieto I, Birouste M, Zamora-Ledezma E et al (2017) Decomposition rates of fine roots from three herbaceous perennial species: combined effect of root mixture composition and living plant community. Plant Soil 415:359–372

    CAS  Article  Google Scholar 

  84. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  85. Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    CAS  Article  Google Scholar 

  86. Ravenek JM, Bessler H, Engels C et al (2014) Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123:1528–1536

    Article  Google Scholar 

  87. Roscher C, Schumacher J, Baade J et al (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121

    Article  Google Scholar 

  88. Rosenkranz S, Wilcke W, Eisenhauer N, Oelmann Y (2012) Net ammonification as influenced by plant diversity in experimental grasslands. Soil Biol Biochem 48:78–87

    CAS  Article  Google Scholar 

  89. Rosseel Y (2012) {lavaan}: an {R} package for structural equation modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  90. Roumet C, Birouste M, Picon-Cochard C et al (2016) Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826

    PubMed  Article  Google Scholar 

  91. Salamon JA, Schaefer M, Alphei J et al (2004) Effects of plant diversity on Collembola in an experimental grassland ecosystem. Oikos 106:51–60

    Article  Google Scholar 

  92. Schaefer M (ed) (2009) Brohmer Fauna von Deutschland: Ein Bestimmungsbuch unserer Heimischen Tierwelt, 23rd edn. Quelle & Meyer Verlag, Wiebelsheim

    Google Scholar 

  93. Schaller J, Hodson MJ, Struyf E (2017) Is relative Si/Ca availability crucial to the performance of grassland ecosystems? Ecosphere. doi:10.1002/ecs2.1726

    Google Scholar 

  94. Scherber C, Eisenhauer N, Weisser WW et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556

    CAS  PubMed  Article  Google Scholar 

  95. Scherer-Lorenzen M (2008) Functional diversity affects decomposition processes in experimental grasslands. Funct Ecol 22:547–555

    Article  Google Scholar 

  96. Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze E-D (2003) The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84:1539–1552

    Article  Google Scholar 

  97. Scheu S (1992) Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol Biochem 24:1113–1118

    Article  Google Scholar 

  98. Schneider K, Renker C, Scheu S, Maraun M (2004) Feeding biology of oribatid mites: a minireview. Phytophaga 14:247–256

    Google Scholar 

  99. Schreeg LA, Mack MC, Turner BL (2013) Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology 94:94–105

    PubMed  Article  Google Scholar 

  100. Schroeder-Georgi T, Wirth C, Nadrowski K et al (2016) From pots to plots: hierarchical trait-based prediction of plant performance in a mesic grassland. J Ecol 104:206–218

    Article  Google Scholar 

  101. Siepel H, de Ruiter-Dijkman EM (1993) Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biol Biochem 25:1491–1497

    Article  Google Scholar 

  102. Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    PubMed  Article  Google Scholar 

  103. Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798

    CAS  PubMed  Article  Google Scholar 

  104. Smith SW, Woodin SJ, Pakeman RJ et al (2014) Root traits predict decomposition across a landscape-scale grazing experiment. New Phytol 203:851–862

    PubMed  PubMed Central  Article  Google Scholar 

  105. Solly EF, Schoening I, Boch S et al (2014) Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant Soil 382:203–218

    CAS  Article  Google Scholar 

  106. Spehn EM, Joshi J, Schmid B et al (2000) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224:217–230

    CAS  Article  Google Scholar 

  107. Steinbeiss S, Beßler H, Engels C et al (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Change Biol 14:2937–2949

    Article  Google Scholar 

  108. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  109. Strickland MS, Rousk J (2010) Considering fungal:bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    CAS  Article  Google Scholar 

  110. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  111. Thein S, Roscher C, Schulze E-D (2008) Effects of trait plasticity on aboveground biomass production depend on species identity in experimental grasslands. Basic Appl Ecol 5:475–484

    Article  Google Scholar 

  112. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    CAS  Article  Google Scholar 

  113. Wang H, Liu S, Mo J (2010) Correlation between leaf litter and fine root decomposition among subtropical tree species. Plant Soil 335:289–298

    CAS  Article  Google Scholar 

  114. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  115. Whitehead DC (2000) Nutrient elements in grassland: soil–plant–animal relationships. CABI Publishing, Oxon

    Google Scholar 

  116. Wildung RE, Garland TR, Buschbom RL (1975) The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol Biochem 7:373–378

    CAS  Article  Google Scholar 

  117. Wright A, Schnitzer SA, Reich PB (2014) Living close to your neighbors: the importance of both competition and facilitation in plant communities. Ecology 95:2213–2223

    PubMed  Article  Google Scholar 

  118. Yue K, Yang W, Peng C et al (2016) Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Sci Total Environ 566–567:279–287

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The Jena Experiment was funded by the German Science Foundation (DFG, FOR 1451) and was supported by the Friedrich-Schiller-University Jena and the Max Planck Society. We thank the gardeners of the Jena Experiment for maintaining the plots and student helpers for the field work and sample preparation.

Data accessibility

Root mass loss, root C:N ratio, and soil water content are deposited at the Jena Experiment database and will be accessible via Dryad Digital Repository http://dx.doi.org/10.5061/dryad.6k23f (Chen et al. 2017). The rest of the data are deposited at the Jena Experiment database and will be deposited at Pangaea (http://www.pangaea.de).

Author information

Affiliations

Authors

Contributions

LM, JR, AG, MSL, and AW designed the experiment. HC, CF, OGM, NH, and ML collected the data. HC analyzed the data and wrote the manuscript with input from KB and AW. All authors provided input on the final written manuscript.

Corresponding author

Correspondence to Hongmei Chen.

Ethics declarations

Funding

The Jena Experiment was funded by the German Science Foundation (DFG, FOR 1451). LM was funded by the Netherlands Organisation for Scientific Research (NWO, Vidi Grant 864.14.006). MSL was funded by the DFG (Gl262/14 and Gl262/19). YO was funded by the DFG (Oe516/3-2), WW was funded by the DFG (Wi1601/4) and the Swiss National Science Foundation (SNF, 200021E-131195/1).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Communicated by Pascal A. Niklaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 982 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Oram, N.J., Barry, K.E. et al. Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition. Oecologia 185, 499–511 (2017). https://doi.org/10.1007/s00442-017-3962-9

Download citation

Keywords

  • Species richness
  • Functional groups
  • Root litter
  • Jena Experiment
  • SEM