Skip to main content

Chronic stress, energy transduction, and free-radical production in a reptile

Abstract

Stress hormones, such as corticosterone, play a crucial role in orchestrating physiological reaction patterns shaping adapted responses to stressful environments. Concepts aiming at predicting individual and population responses to environmental stress typically consider that stress hormones and their effects on metabolic rate provide appropriate proxies for the energy budget. However, uncoupling between the biochemical processes of respiration, ATP production, and free-radical production in mitochondria may play a fundamental role in the stress response and associated life histories. In this study, we aim at dissecting sub-cellular mechanisms that link these three processes by investigating both whole-organism metabolism, liver mitochondrial oxidative phosphorylation processes (O2 consumption and ATP production) and ROS emission in Zootoca vivipara individuals exposed 21 days to corticosterone relative to a placebo. Corticosterone enhancement had no effect on mitochondrial activity and efficiency. In parallel, the corticosterone treatment increased liver mass and mitochondrial protein content suggesting a higher liver ATP production. We also found a negative correlation between mitochondrial ROS emission and plasma corticosterone level. These results provide a proximal explanation for enhanced survival after chronic exposure to corticosterone in this species. Importantly, none of these modifications affected resting whole-body metabolic rate. Oxygen consumption, ATP, and ROS emission were thus independently affected in responses to corticosterone increase suggesting that concepts and models aiming at linking environmental stress and individual responses may misestimate energy allocation possibilities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Andres AM, Stotland A, Queliconi BB, Gottlieb RA (2015) A time to reap, a time to sow: mitophagy and biogenesis in cardiac pathophysiology. J Mol Cell Cardiol 78:62–72

    CAS  Article  PubMed  Google Scholar 

  2. Artacho P, Jouanneau I, Le Galliard JF (2013) Interindividual variation in thermal sensitivity of maximal sprint speed, thermal behavior, and resting metabolic rate in a lizard. Physiol Biochem Zool 86:458–469

    Article  PubMed  Google Scholar 

  3. Arvier M, Lagoutte L, Johnson G, Dumas JF, Sion B, Grizard G, Malthiery Y, Simard G, Ritz P (2007) Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment. Am J Physiol Endocrinol Metab 293:E1320–E1324

    CAS  Article  PubMed  Google Scholar 

  4. Beavis AD, Lehninger AL (1986) The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation: stoichiometry of oxidative phosphorylation. Eur J Biochem 158:315–322

    CAS  Article  PubMed  Google Scholar 

  5. Brand MD (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 35:811–820

    CAS  Article  PubMed  Google Scholar 

  6. Brand MD (2005) The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans 33:897–904

    CAS  Article  PubMed  Google Scholar 

  7. Brown JH, Gillooly JF, Allen AP, Savage VN, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  8. Caro P, Gomez J, Sanz A, Portero-Otin M, Pamplona R, Barja G (2007) Effect of graded corticosterone treatment on aging-related markers of oxidative stress in rat liver mitochondria. Biogerontology 8:1–11

    CAS  Article  PubMed  Google Scholar 

  9. Chida Y, Sudo N, Kubo C (2006) Does stress exacerbate liver disease? J Gastroenter Hepatol 20:202–208

    Article  Google Scholar 

  10. Cote J, Clobert J, Meylan S, Fitze PS (2006) Experimental enhancement of corticosterone levels positively affects subsequent male survival. Horm Behav 49:320–327

    CAS  Article  PubMed  Google Scholar 

  11. Cote J, Meylan S, Clobert J, Voituron Y (2010) Carotenoid-based coloration, oxidative stress and corticosterone in common lizards. J Exp Biol 213:2116–2124

    CAS  Article  PubMed  Google Scholar 

  12. Crossin GT, Love OP, Cooke SJ, Williams TD (2016) Glucocorticoid manipulations in free-living animals: considerations of dose delivery, life-history context and reproductive state. Funct Ecol 30:116–125

    Article  Google Scholar 

  13. Dauphin-Villemant C, Xavier F (1987) Nychthemeral variations of plasma corticosteroids in captive female Lacerta vivipara Jacquin: influence of stress and reproductive state. Gen Comp Endocrinol 67:292–302

    CAS  Article  PubMed  Google Scholar 

  14. Desquiret V et al (2006) Dinitrophenol-induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells. Biochem Biophys Acta 1757:21–30

    CAS  PubMed  Google Scholar 

  15. Dhabhar FS, McEwen BS, Spencer RL (1997) Adaptation to prolonged or repeated stress—comparison between rat strains showing intrinsic differences in reactivity to acute stress. Neuroendocrinology 65:360–368

    CAS  Article  PubMed  Google Scholar 

  16. Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc Biol Sci 276:1737–1745

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  17. Du J et al (2009) Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci USA 106:3543–3548

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  18. Duclos M, Gouarne C, Martin C, Rocher C, Mormede P, Letellier T (2004) Effects of corticosterone on muscle mitochondria identifying different sensitivity to glucocorticoids in Lewis and Fischer rats. Am J Physiol 286:E159–E167

    CAS  Google Scholar 

  19. Dumas JF et al (2003) Mitochondrial energy metabolism in a model of undernutrition induced by dexamethasone. Br J Nutr 90:969–977

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  20. Durant SE, Romero LM, Talent LG, Hopkins WA (2008) Effect of exogenous corticosterone on respiration in a reptile. Gen Comp Endocrinol 156:126–133

    CAS  Article  PubMed  Google Scholar 

  21. Glazier DS (2015) Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol Rev 90:377–407

    Article  PubMed  Google Scholar 

  22. Isaksson C, Sheldon BC, Uller T (2011) The challenges of integrating oxidative stress into life-history biology. Bioscience 61:194–202

    Article  Google Scholar 

  23. Jani MS, Telang SD, Katyare SS (1991) Effect of corticosterone treatment on energy metabolism in rat liver mitochondria. J Steroid Biochem Mol Biol 38:587–591

    CAS  Article  PubMed  Google Scholar 

  24. Kimberg DV, Loud AV, Wiener J (1968) Cortisone-induced alterations in mitochondrial function and structure. J Cell Biol 37:63–79

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  25. Kooijman SALM (2010) Dynamic energy budget theory for metabolic organisation, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  26. Liang SW et al (2017) Seasonal variation of metabolism in lizard Phrynocephalus vlangalii at high altitude. Comp Biochem Physiol A 203:341–347

    CAS  Article  Google Scholar 

  27. Lighton JRB (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, Oxford

    Book  Google Scholar 

  28. Mason RT (1992) Reptilian pheromones. In: Gans C, Crews D (eds) Biology of the Reptilia, vol 18. University of Chicago Press, Chicago, pp 114–228

  29. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904

    Article  PubMed  Google Scholar 

  30. McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    Article  PubMed  Google Scholar 

  31. Metcalfe NB, Alonso-Alvarez C (2010) Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct Ecol 24:984–996

    Article  Google Scholar 

  32. Meylan S, Clobert J (2005) Is corticosterone-mediated phenotype development adaptive? Maternal corticosterone treatment enhances survival in male lizards. Horm Behav 48:44–52

    CAS  Article  PubMed  Google Scholar 

  33. Meylan S, Dufty AM, Clobert J (2003) The effect of transdermal corticosterone application on plasma corticosterone levels in pregnant Lacerta vivipara. Comp Biochem Physiol A Mol Integr Physiol 134:497–503

    CAS  Article  PubMed  Google Scholar 

  34. Meylan S, Haussy C, Voituron Y (2010) Physiological actions of corticosterone and its modulation by an immune challenge in reptiles. Gen Comp Endocrinol 169:158–166

    CAS  Article  PubMed  Google Scholar 

  35. Miles DB, Calsbeek R, Sinervo B (2007) Corticosterone, locomotor performance, and metabolism in side-blotched lizards (Uta stansburiana). Horm Behav 51:548–554

    CAS  Article  PubMed  Google Scholar 

  36. Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92

    Article  PubMed  Google Scholar 

  37. Monternier PA, Marmillot V, Rouanet JL, Roussel D (2014) Mitochondrial phenotypic flexibility enhances energy savings during winter fast in king penguin chicks. J Exp Biol 217:2691–2697

    Article  PubMed  Google Scholar 

  38. Morici LA, Elsey RM, Lance VA (1997) Effects of long-term corticosterone implants on growth and immune function in juvenile alligators, Alligator mississippiensis. J Exp Zool 279:156–162

    CAS  Article  PubMed  Google Scholar 

  39. Nisbet RM, Jusup M, Klanjscek T, Pecquerie L (2012) Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models. J Exp Biol 215:892–902

    Article  PubMed  Google Scholar 

  40. Palacios MG, Sparkman AM, Bronikowski AM (2012) Corticosterone and pace of life in two life-history ecotypes of the garter snake Thamnophis elegans. Gen Comp Endocrinol 175:443–448

    CAS  Article  PubMed  Google Scholar 

  41. Pandya JD, Agarwal NA, Katyare SS (2004) Effect of dexamethasone treatment on oxidative energy metabolism in rat liver mitochondria during postnatal developmental periods. Drug Chem Toxicol 27:389–403

    CAS  Article  PubMed  Google Scholar 

  42. Picard M, Juster RP, McEwen BS (2014) Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat Rev Endocrinol 10:303–310

    CAS  Article  PubMed  Google Scholar 

  43. Price CA et al (2012) Testing the metabolic theory of ecology. Ecol Lett 15:1465–1474

    Article  PubMed  Google Scholar 

  44. Psarra AM, Sekeris CE (2011) Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochem Biophys Acta 1813:1814–1821

    CAS  Article  PubMed  Google Scholar 

  45. Ricklefs RE, Wikelski M (2002) The physiology-life history nexus. Trends Ecol Evol 17:462–468

    Article  Google Scholar 

  46. Robert KA, Bronikowski AM (2010) Evolution of senescence in nature: physiological evolution in populations of garter snake with divergent life histories. Am Nat 175:E147–E159

    Article  Google Scholar 

  47. Roma LP, Souza KL, Carneiro EM, Boschero AC, Bosqueiro JR (2012) Pancreatic islets from dexamethasone-treated rats show alterations in global gene expression and mitochondrial pathways. Gen Physiol Biophys 31:65–76

    CAS  Article  PubMed  Google Scholar 

  48. Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model—a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389

    Article  PubMed  Google Scholar 

  49. Roussel D, Dumas JF, Simard G, Malthiery Y, Ritz P (2004) Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment. Biochem J 382:491–499

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  50. Salin K, Luquet E, Rey B, Roussel D, Voituron Y (2012a) Alteration of mitochondrial efficiency affects oxidative balance, development and growth in frog (Rana temporaria) tadpoles. J Exp Biol 215:863–869

    CAS  Article  PubMed  Google Scholar 

  51. Salin K, Roussel D, Rey B, Voituron Y (2012b) David and goliath: a mitochondrial coupling problem? J Exp Zool A 317:283–293

    CAS  Article  Google Scholar 

  52. Salin K, Auer SK, Rey B, Selman C, Metcalfe NB (2015) Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc Biol Sci 282:20151028

    Article  PubMed Central  PubMed  Google Scholar 

  53. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    CAS  PubMed  Google Scholar 

  54. Sinervo B (1999) Mechanistic analysis of natural selection and a refinement of lack’s and William’s principles. Am Nat 154:S26–S42

    Article  Google Scholar 

  55. Sinervo B, DeNardo DF (1996) Costs of reproduction in the wild: path analysis of natural selection and experimental tests of causation. Evolution 50:1299–1313

    Article  PubMed  Google Scholar 

  56. Sommer AM, Portner HO (2004) Mitochondrial function in seasonal acclimatization versus latitudinal adaptation to cold in the lugworm Arenicola marina (L.). Physiol Biochem Zool 77:174–186

    CAS  Article  PubMed  Google Scholar 

  57. Strack AM, Bradbury MJ, Dallman MF (1995) Corticosterone decreases nonshivering thermogenesis and increases lipid storage in brown adipose tissue. Am J Physiol 268:R183–R191

    CAS  PubMed  Google Scholar 

  58. Team RDC (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  59. Zera AJ, Potts J, Kobus K (1998) The physiology of life-history trade-offs: experimental analysis of a hormonally induced life-history trade-off in Gryllus assimilis. Am Nat 152:7–23

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to field assistants and technical staff at CEREEP-Ecotron IleDeFrance for their support, especially Hugo Mell. This study was funded by the Centre National de la Recherche Scientifique (CNRS), the Agence Nationale de la Recherche (ANR-13-JSV7-0011-01 to S.M.) and the Région Île-de-France R2DS program (Grant 2013-08 to S.M., J.F.L.G. and R.J.). The authors declare no competing or financial interests.

Author information

Affiliations

Authors

Contributions

YV, SM, and JFLG conceived, designed the study, and analyzed the data. RJ ensured animal husbandry, hormonal treatment and performed the statistical analyses. CH ensured plasma corticosterone measurements. DR and CR conceived and conducted the bioenergetics studies and performed the ROS production assessment. YV, SM, and JFLG wrote the manuscript; other authors provided editorial advice.

Corresponding author

Correspondence to Yann Voituron.

Additional information

Communicated by Deron E. Burkepile.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 257 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voituron, Y., Josserand, R., Le Galliard, JF. et al. Chronic stress, energy transduction, and free-radical production in a reptile. Oecologia 185, 195–203 (2017). https://doi.org/10.1007/s00442-017-3933-1

Download citation

Keywords

  • Corticosterone
  • Reptile
  • Mitochondrial efficiency
  • Allostatic overload
  • ROS emission and ATP production
  • Oxygen consumption