Skip to main content
Log in

Environmental exposure does not explain putative maladaptation in road-adjacent populations

  • Conservation ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

While the ecological consequences of roads are well described, little is known of their role as agents of natural selection, which can shape adaptive and maladaptive responses in populations influenced by roads. This knowledge gap persists despite a growing appreciation for the influence of evolution in human-altered environments. There, insights indicate that natural selection typically results in local adaptation. Thus, populations influenced by road-induced selection should evolve fitness advantages in their local environment. Contrary to this expectation, wood frog tadpoles from roadside populations show evidence of a fitness disadvantage, consistent with local maladaptation. Specifically, in reciprocal transplants, roadside populations survive at lower rates compared to populations away from roads. A key question remaining is whether roadside environmental conditions experienced by early stage embryos induce this outcome. This represents an important missing piece in evaluating the evolutionary nature of this maladaptation pattern. Here, I address this gap using a reciprocal transplant experiment designed to test the hypothesis that embryonic exposure to roadside pond water induces a survival disadvantage. Contrary to this hypothesis, my results show that reduced survival persists when embryonic exposure is controlled. This outcome indicates that the survival disadvantage is parentally mediated, either genetically and/or through inherited environmental effects. This result suggests that roadside populations are either truly maladapted or potentially locally adapted at later life stages. I discuss these interpretations, noting that regardless of mechanism, patterns consistent with maladaptation have important implications for conservation. In light of the pervasiveness of roads, further resolution explaining maladaptive responses remains a critical challenge in conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberti M et al (2017) Global urban signatures of phenotypic change in animal and plant populations. Proc Natl Acad Sci. doi:10.1073/pnas.1606034114

    Google Scholar 

  • Berven KA (2009) Density dependence in the terrestrial stage of wood frogs: evidence from a 21-year population study. Copeia 2009:328–338

    Article  Google Scholar 

  • Bolnick DI, Nosil P (2007) Natural selection in populations subject to a migration load. Evolution 61:2229–2243

    Article  PubMed  Google Scholar 

  • Brady SP (2012) Road to evolution? Local adaptation to road adjacency in an amphibian (Ambystoma maculatum). Sci Rep. doi:10.1038/srep00235

    PubMed  PubMed Central  Google Scholar 

  • Brady SP (2013) Microgeographic maladaptive performance and deme depression in a fragmented landscape. PeerJ 1:e163. doi:10.7717/peerj.163

    Article  PubMed  PubMed Central  Google Scholar 

  • Brady SP, Richardson JL (2017) Road ecology: shifting gears toward evolutionary perspectives. Front Ecol Environ 15:91–98. doi:10.1002/fee.1458

    Article  Google Scholar 

  • Brown CR, Bomberger Brown M (2013) Where has all the road kill gone? Curr Biol 23:R233–R234

    Article  CAS  PubMed  Google Scholar 

  • Canning D (1998) A database of world stocks of infrastructure, 1950–95. World Bank Econ Rev 12:529

    Article  Google Scholar 

  • Carroll SP et al (2014) Applying evolutionary biology to address global challenges. Science. doi:10.1126/science.1245993

    PubMed Central  Google Scholar 

  • Central Intelligence Agency (2013) The world Factbook 2013-14. Washington, DC

  • Christie M, Marine M, French R, Blouin M (2012) Genetic adaptation to captivity can occur in a single generation. Proc Natl Acad Sci 109:238–242

    Article  CAS  PubMed  Google Scholar 

  • Crespi BJ (2000) The evolution of maladaptation. Heredity 84:623–629

    Article  PubMed  Google Scholar 

  • Dananay KL, Krynak KL, Krynak TJ, Benard MF (2015) Legacy of road salt: apparent positive larval effects counteracted by negative post-metamorphic effects in wood frogs. Environ Toxicol Chem doi:10.1002/etc.3082

  • Darimont CT, Carlson SM, Kinnison MT, Paquet PC, Reimchen TE, Wilmers CC (2009) Human predators outpace other agents of trait change in the wild. Proc Natl Acad Sci. doi:10.1073/pnas.0809235106

    Google Scholar 

  • Dulac J (2013) Global land transport infrastructure requirements: estimating road and railway infrastructure capacity and costs to 2050. International Energy Agency

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Thompson Press, Essex

    Google Scholar 

  • Falk JJ, Parent CE, Agashe D, Bolnick DI (2012) Drift and selection entwined: asymmetric reproductive isolation in an experimental niche shift. Evol Ecol Res 14:403–423

    Google Scholar 

  • Forman RTT (2000) Estimate of the area affected ecologically by the road system in the United States. Conserv Biol 14:31–35

    Article  Google Scholar 

  • Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231

    Article  Google Scholar 

  • Franks SJ, Weber JJ, Aitken SN (2014) Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol Appl 7:123–139. doi:10.1111/eva.12112

    Article  PubMed  Google Scholar 

  • Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 21:434–443. doi:10.1111/j.1365-2435.2006.01228.x

    Article  Google Scholar 

  • Garcia-Ramos G, Kirkpatrick M (1997) Genetic models of adaptation and gene flow in peripheral populations. Evolution 51:21–28

    Article  PubMed  Google Scholar 

  • Gonzalez A, Ronce O, Ferriere R, Hochberg ME (2013) Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos Trans R Soc B 368:20120404

    Article  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Hall EM, Brady SP, Mattheus NM, Earley RL, Diamond M, Crespi EJ (2017) Physiological consequences of exposure to salinized roadside ponds on wood frog larvae and adults. Biol Conserv 209:98–106. doi:10.1016/j.biocon.2017.02.013

    Article  Google Scholar 

  • Hendry AP, Gonzalez A (2008) Whither adaptation? Biol Philos 23:673–699

    Article  Google Scholar 

  • Hendry AP, Kinnison MT (1999) Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53:1637–1653

    Article  PubMed  Google Scholar 

  • Hendry AP et al (2010) Evolutionary biology in biodiversity science, conservation, and policy: a call to action. Evolution 64:1517–1528

    PubMed  Google Scholar 

  • Hereford J (2009) A quantitative survey of local adaptation and fitness trade-offs. Am Nat 173:579–588. doi:10.1086/597611

    Article  PubMed  Google Scholar 

  • Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Höglund J (2009) Evolutionary conservation genetics. Oxford University Press, Oxford

  • Hopkins GR, Brodie ED Jr, French SS (2014) Developmental and evolutionary history affect survival in stressful environments. PLoS ONE 9:e95174. doi:10.1371/journal.pone.0095174

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu W-T, Wu C-S, Lai J-C, Chiao Y-K, Hsu C-H, Kam Y-C (2012) Salinity acclimation affects survival and metamorphosis of crab-eating frog tadpoles. Herpetologica 68:14–21

    Article  Google Scholar 

  • Hua J, Pierce BA (2013) Lethal and sublethal effects of salinity on three common texas amphibians. Copeia 2013:562–566. doi:10.1643/OT-12-126

    Article  Google Scholar 

  • Hua J, Jones DK, Mattes BM, Cothran RD, Relyea RA, Hoverman JT (2015) The contribution of phenotypic plasticity to the evolution of insecticide tolerance in amphibian populations. Evol Appl 8:586–596. doi:10.1111/eva.12267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karraker NE, Gibbs JP (2011) Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches. Environ Pollut. doi:10.1016/j.envpol.2010.11.019

    PubMed  Google Scholar 

  • Karraker NE, Gibbs JP, Vonesh JR (2008a) Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecol Appl 18:724–734. doi:10.1890/07-1644.1

    Article  PubMed  Google Scholar 

  • Karraker NE, Gibbs JP, Vonesh JR (2008b) Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecol Appl. doi:10.1890/07-1644.1

    PubMed  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23

    Article  CAS  PubMed  Google Scholar 

  • Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3:e4010–e4010

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Marsh D et al (2008) Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv Genet 9:603–613. doi:10.1007/s10592-007-9377-0

    Article  Google Scholar 

  • Metts BS, Buhlmann KA, Scott DE, Tuberville TD, Hopkins WA (2012) Interactive effects of maternal and environmental exposure to coal combustion wastes decrease survival of larval southern toads (Bufo terrestris). Environ Pollut 164:211–218. doi:10.1016/j.envpol.2012.01.042

    Article  CAS  PubMed  Google Scholar 

  • Murren CJ et al (2015) Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115:293–301. doi:10.1038/hdy.2015.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor CM, Norris DR, Crossin GT, Cooke SJ (2014) Biological carryover effects: linking common concepts and mechanisms in ecology and evolution. Ecosphere 5:28

    Article  Google Scholar 

  • Petranka JW, Francis RA (2013) Effects of road salts on seasonal wetlands: poor prey performance may compromise growth of predatory salamanders. Wetlands 4:707–715

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Richardson JL (2012) Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol Ecol 18:4437–4451. doi:10.1111/j.1365-294X.2012.05708.x

    Article  Google Scholar 

  • Richardson JL, Urban MC (2013) Strong selection barriers explain microgeographic adaptation in wild salamander populations. Evolution 67:1729–1740. doi:10.1111/evo.12052

    Article  PubMed  Google Scholar 

  • Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29:165–176. doi:10.1016/j.tree.2014.01.002

    Article  PubMed  Google Scholar 

  • Richardson JL, Brady SP, Wang IJ, Spear SF (2016) Navigating the pitfalls and promise of landscape genetics. Mol Ecol 25:849–863. doi:10.1111/mec.13527

    Article  PubMed  Google Scholar 

  • Robertson BA, Rehage JS, Sih A (2013) Ecological novelty and the emergence of evolutionary traps. Trends Ecol Evol 28:552–560

    Article  PubMed  Google Scholar 

  • Rogalski MA (2017) Maladaptation to acute metal exposure in resurrected daphnia ambigua clones after decades of increasing contamination. Am Nat 189:443–452. doi:10.1086/691077

    Article  PubMed  Google Scholar 

  • Rolshausen G et al (2015) Do stressful conditions make adaptation difficult? Guppies in the oil-polluted environments of southern Trinidad. Evol Appl 8:854–870. doi:10.1111/eva.12289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossiter MC (1996) Incidence and consequences of inherited environmental effects. Annu Rev Ecol Syst 27:451–476

    Article  Google Scholar 

  • Saino N, Dall’ara P, Martinelli R, Moller AP (2002) Early maternal effects and antibacterial immune factors in the eggs, nestlings and adults of the barn swallow. J Evol Biol 15:735–743. doi:10.1046/j.1420-9101.2002.00448.x

    Article  CAS  Google Scholar 

  • Sanzo D, Hecnar SJ (2006) Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environ Pollut. doi:10.1016/j.envpol.2005.07.013

    PubMed  Google Scholar 

  • Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820

    Article  CAS  PubMed  Google Scholar 

  • Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101. doi:10.1016/S0169-5347(02)00044-7

    Article  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164

  • Tennessen JB, Parks SE, Langkilde T (2014) Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv Physiol. doi:10.1093/conphys/cou032

    PubMed  PubMed Central  Google Scholar 

  • Thompson JN, Nuismer SL, Gomulkiewicz R (2001) Coevolution and maladaptation Annual Meeting of the Society-for-Integrative-and-Comparative-Biology. Soc Integr Comp Biol pp 381–387

  • Todd BD, Bergeron CM, Hepner MJ, Hopkins WA (2011) Aquatic and terrestrial stressors in amphibians: a test of the double jeopardy hypothesis based on maternally and trophically derived contaminants. Environ Toxicol Chem 30:2277–2284

    Article  CAS  PubMed  Google Scholar 

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30

    Article  Google Scholar 

  • Urban MC, Richardson JL, Freidenfelds NA (2014) Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evol Appl 7:88–103. doi:10.1111/eva.12114

    Article  PubMed  Google Scholar 

  • Van Buskirk J, Steiner U (2009) The fitness costs of developmental canalization and plasticity. J Evol Biol 22:852–860

    Article  PubMed  Google Scholar 

  • Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc Lond B 275:649–659. doi:10.1098/rspb.2007.0997

    Article  Google Scholar 

  • Vonesh JR, De la Cruz O (2002) Complex life cycles and density dependence: assessing the contribution of egg mortality to amphibian declines. Oecologia 133:325–333

    Article  PubMed  Google Scholar 

  • Wu C-S, Gomez-Mestre I, Kam Y-C (2012) Irreversibility of a bad start: early exposure to osmotic stress limits growth and adaptive developmental plasticity. Oecologia 169:15–22

    Article  PubMed  Google Scholar 

  • Wu CS, Yang WK, Lee TH, Gomez-Mestre I, Kam YC (2014) Salinity acclimation enhances salinity tolerance in tadpoles living in brackish water through increased Na+, K+-ATPase expression. J Exp Zool Part A 321:57–64

    Article  CAS  Google Scholar 

  • Yauk CL, Fox GA, McCarry BE, Quinn JS (2000) Induced minisatellite germline mutations in herring gulls (Larus argentatus) living near steel mills. Mutat Res 452(2):211–218

    Article  CAS  PubMed  Google Scholar 

  • Zimova M, Mills LS, Nowak JJ (2016) High fitness costs of climate change-induced camouflage mismatch. Ecol Lett 19:299–307. doi:10.1111/ele.12568

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to the Leopold Schepp Foundation for support of this work through scholarship. I thank D Skelly, S Alonzo, P Turner, M Urban, A Hendry, J Richardson, and R Calsbeek for key guidance and project advice, and helpful conversations on the manuscript. I am grateful to S Bolden for extensive field and lab support. S Attwood, B and H Bement, E Crespi, E Hall, and J Bushey assisted in the field.

Author information

Authors and Affiliations

Authors

Contributions

SPB conceived, designed, and executed this study and wrote the manuscript. No other person is entitled to authorship.

Corresponding author

Correspondence to Steven P. Brady.

Ethics declarations

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Funding

This research was supported by funding from the Mianus River Gorge Preserve Research Assistantship Program, the Hixon Center for Urban Ecology, and National Science Foundation (DEB 1011335).

Conflict of interest

The author declares that no conflict of interest exists.

Additional information

Communicated by Raoul Van Damme.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brady, S.P. Environmental exposure does not explain putative maladaptation in road-adjacent populations. Oecologia 184, 931–942 (2017). https://doi.org/10.1007/s00442-017-3912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3912-6

Keywords

Navigation