Skip to main content
Log in

Which temporal resolution to consider when investigating the impact of climatic data on population dynamics? The case of the lesser horseshoe bat (Rhinolophus hipposideros)

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Climatic variables are often considered when studying environmental impacts on population dynamics of terrestrial species. However, the temporal resolution considered varies depending on studies, even among studies of the same taxa. Most studies interested in climatic impacts on populations tend to average climatic data across timeframes covering life cycle periods of the organism in question or longer, even though most climatic databases provide at least a monthly resolution. We explored the impact of climatic variables on lesser horseshoe bat (Rhinolophus hipposideros) demography based on count data collected at 94 maternity colonies from 2000 to 2014 in Britanny, France. Meteorological data were considered using different time resolutions (month, life cycle period and year) to investigate their adequacy. Model averaging was used to detect significant predictors for each temporal resolution. Our results show that the finest temporal resolution, e.g. month, was more informative than coarser ones. Precipitation predictors were particularly decisive, with a negative impact on colony sizes when rainfall occurred in October, and a positive impact for June precipitations. Fecundity was influenced by April weather. This highlights the strong impact of climatic conditions during crucial but short time periods on the population dynamics of bats. We demonstrate the importance of choosing an appropriate time resolution and suggest that analogous studies should consider fine-scale temporal resolution (e.g. month) to better grasp the relationship between population dynamics and climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams RA (2010) Bat reproduction declines when conditions mimic climate change projections for western North America. Ecology 91:2437–2445

    Article  PubMed  Google Scholar 

  • Adams RA, Hayes MA (2008) Water availability and successful lactation by bats as related to climate change in arid regions of western North America. J Anim Ecol 77:1115–1121. doi:10.1111/j.1365-2656.2008.01447.x

    Article  PubMed  Google Scholar 

  • Aho K, Derryberry D, Peterson T (2014) Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95:631–636

    Article  PubMed  Google Scholar 

  • Akesson S (2016) Flying with the winds: differential migration strategies in relation to winds in moth and songbirds. J Anim Ecol 85:1–4. doi:10.1111/1365-2656.12450

    Article  PubMed  Google Scholar 

  • Amorim F, Rebelo H, Rodrigues L (2012) Factors influencing bat activity and mortality at a wind farm in the mediterranean Region. Acta Chiropterol 14:439–457. doi:10.3161/150811012X661756

    Article  Google Scholar 

  • Amorim F, Mata VA, Beja P, Rebelo H (2015) Effects of a drought episode on the reproductive success of European free-tailed bats (Tadarida teniotis). Mamm Biol 80:228–236. doi:10.1016/j.mambio.2015.01.005

    Article  Google Scholar 

  • Barbet-Massin M, Jetz W (2014) A 40-year, continent-wide, multispecies assessment of relevant climate predictors for species distribution modelling. Divers Distrib 20:1285–1295. doi:10.1111/ddi.12229

    Article  Google Scholar 

  • Barbraud C, Weimerskirch H (2001) Emperor penguins and climate change. Nature 411:183–186. doi:10.1038/35075554

    Article  CAS  PubMed  Google Scholar 

  • Bateman BL, Abell-Davis SE, Johnson CN (2011) Climate-driven variation in food availability between the core and range edge of the endangered northern bettong (Bettongia tropica). Aust J Zool 59:177–185. doi:10.1071/ZO11079

    Article  Google Scholar 

  • Beltramino AA, Vogler RE, Gutiérrez Gregoric DE, Rumi A (2015) Impact of climate change on the distribution of a giant land snail from South America: predicting future trends for setting conservation priorities on native malacofauna. Clim Change 131:621–633. doi:10.1007/s10584-015-1405-3

    Article  Google Scholar 

  • Bleho BI, Koper N, Borkowsky CL, Hamel CD (2015) Effects of weather and land management on the western prairie fringed-orchid (Platanthera praeclara) at the northern limit of its range in Manitoba, Canada. Am Midl Nat 174:191–203. doi:10.1674/0003-0031-174.2.191

    Article  Google Scholar 

  • Bontadina F, Arlettaz R, Fankhauser T et al (2000) The lesser horseshoe bat Rhinolophus hipposideros in Switzerland: present status and research recommendations. Le Rhinolophe 14:69–83

    Google Scholar 

  • Bontadina F, Schofield H, Naef-Daenzer B (2002) Radio-tracking reveals that lesser horseshoe bats (Rhinolophus hipposideros) forage in woodland. J Zool 258:281–290. doi:10.1017/S0952836902001401

    Article  Google Scholar 

  • Bruggeman JE, Swem T, Andersen DE et al (2015) Dynamics of a recovering arctic bird population: the importance of climate, density dependence, and site quality. Ecol Appl 25:1932–1943

    Article  PubMed  Google Scholar 

  • Burles DW, Brigham RM, Ring RA, Reimchen TE (2009) Influence of weather on two insectivorous bats in a temperate Pacific Northwest rainforest. Can J Zool 87:132–138

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. doi:10.1007/s00265-010-1029-6

    Article  Google Scholar 

  • Calcagno V, de Mazancourt C et al (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34:1–29

    Article  Google Scholar 

  • Ceglar A, Toreti A, Lecerf R et al (2016) Impact of meteorological drivers on regional inter-annual crop yield variability in France. Agric For Meteorol 216:58–67. doi:10.1016/j.agrformet.2015.10.004

    Article  Google Scholar 

  • Ciechanowski M, Zajac T, Bilas A, Dunajski R (2007) Spatiotemporal variation in activity of bat species differing in hunting tactics: effects of weather, moonlight, food abundance, and structural clutter. Can J Zool 85:1249–1263

    Article  Google Scholar 

  • Ciuti S, Jensen WF, Nielsen SE, Boyce MS (2015) Predicting mule deer recruitment from climate oscillations for harvest management on the northern Great Plains: predicting deer recruitment from climate indices. J Wildl Manag 79:1226–1238. doi:10.1002/jwmg.956

    Article  Google Scholar 

  • Del Toro I, Silva RR, Ellison AM (2015) Predicted impacts of climatic change on ant functional diversity and distributions in eastern North American forests. Divers Distrib 21:781–791. doi:10.1111/ddi.12331

    Article  Google Scholar 

  • Delignette-Muller ML, Dutang C (2014) fitdistrplus: an R package for fitting distributions. J Stat Softw 64:1–34

    Google Scholar 

  • Dool SE, Puechmaille SJ, Dietz C et al (2013) Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: evidence from multiple genetic markers. Mol Ecol 22:4055–4070. doi:10.1111/mec.12373

    Article  CAS  PubMed  Google Scholar 

  • Dool SE, Puechmaille SJ, Kelleher C et al (2016) The effects of human-mediated habitat fragmentation on a sedentary woodland-associated species (Rhinolophus hipposideros) at its range margin. Acta Chiropterol 18:377–393

    Article  Google Scholar 

  • Dugger KM, Forsman ED, Franklin AB et al (2016) The effects of habitat, climate, and Barred Owls on long-term demography of Northern Spotted Owls. Condor 118:57–116. doi:10.1650/CONDOR-15-24.1

    Article  Google Scholar 

  • Forrester TD, Wittmer HU (2013) A review of the population dynamics of mule deer and black-tailed deer Odocoileus hemionus in North America. Mammal Rev 43:292–308. doi:10.1111/mam.12002

    Article  Google Scholar 

  • Frick WF, Reynolds DS, Kunz TH (2010) Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J Anim Ecol 79:128–136. doi:10.1111/j.1365-2656.2009.01615.x

    Article  PubMed  Google Scholar 

  • Frick WF, Stepanian PM, Kelly JF et al (2012) Climate and weather impact timing of emergence of bats. PLoS One 7:e42737. doi:10.1371/journal.pone.0042737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaisler J (1966) Reproduction in the lesser horseshoe bat (Rhinolophus hipposideros hipposideros Bechstein, 1800). Bijdr Tot Dierkd 36:45–62

    Google Scholar 

  • Geber MA (2008) To the edge: studies of species’ range limits. New Phytol 178:228–230

    Article  PubMed  Google Scholar 

  • Gedir JV, Cain JW, Harris G, Turnbull TT (2015) Effects of climate change on long-term population growth of pronghorn in an arid environment. Ecosphere 6:1–20. doi:10.1890/ES15-00266.1

    Article  Google Scholar 

  • Giam X, Olden JD (2016) Quantifying variable importance in a multimodel inference framework. Methods Ecol Evol 7:388–397. doi:10.1111/2041-210X.12492

    Article  Google Scholar 

  • Griffin DR (1971) The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim Behav 19:55–61

    Article  CAS  PubMed  Google Scholar 

  • Grindal SD, Collard TS, Brigham RM, Barclay RM (1992) The influence of precipitation on reproduction by Myotis bats in British Columbia. Am Midl Nat 128:339–344

    Article  Google Scholar 

  • Hasan F, Ansari MS (2016) Temperature-dependent development and demography of Zygogramma bicolorata (Coleoptera: Chrysomelidae) on Parthenium hysterophorus. Ann Appl Biol 168:81–92. doi:10.1111/aab.12244

    Article  Google Scholar 

  • Haysom K, Dekker J, Russ J et al (2013) European bat population trends—a prototype biodiversity indicator. European Environment Agency, Denmark

    Google Scholar 

  • Herfindal I, van de Pol M, Nielsen JT et al (2015) Climatic conditions cause complex patterns of covariation between demographic traits in a long-lived raptor. J Anim Ecol 84:702–711. doi:10.1111/1365-2656.12318

    Article  PubMed  Google Scholar 

  • Hoying KM, Kunz TH (1998) Variation in size at birth and post-natal growth in the insectivorous bat Pipistrellus subflavus (Chiroptera: Vespertilionidae). J Zool 245:15–27

    Article  Google Scholar 

  • Hoyle SD, Pople AR, Toop GJ (2001) Mark–recapture may reveal more about ecology than about population trends: demography of a threatened ghost bat (Macroderma gigas) population. Austral Ecol 26:80–92

    Google Scholar 

  • Jones G, Jacobs DS, Kunz TH et al (2009) Carpe noctem: the importance of bats as bioindicators. Endanger Species Res 8:93–115

    Article  Google Scholar 

  • Kanno Y, Pregler KC, Hitt NP et al (2016) Seasonal temperature and precipitation regulate brook trout young-of-the-year abundance and population dynamics. Freshw Biol 61:88–99. doi:10.1111/fwb.12682

    Article  Google Scholar 

  • Kayikcioglu A, Zahn A (2004) High temperatures and the use of satellite roosts in Rhinolophus hipposideros. Mamm Biol 69:337–341. doi:10.1078/1616-5047-00152

    Article  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    Article  PubMed  Google Scholar 

  • Kearney MR, Matzelle A, Helmuth B (2012) Biomechanics meets the ecological niche: the importance of temporal data resolution. J Exp Biol 215:1422–1424. doi:10.1242/jeb.072249

    Article  Google Scholar 

  • Kerbiriou C, Julien JF, Monsarrat S et al (2015) Information on population trends and biological constraints from bat counts in roost cavities: a 22-year case study of a pipistrelle bats (Pipistrellus pipistrellus Schreber) hibernaculum. Wildl Res 42:35. doi:10.1071/WR14197

    Article  Google Scholar 

  • Kingsolver JG (1989) Weather and the population dynamics of insects: integrating physiological and population ecology. Physiol Zool 62:314–334

    Article  Google Scholar 

  • Lamy C, Dubreuil V (2010) Impact des sécheresses en bretagne sur le bilan hydrique: modélisation à partir du climat d’années passées—23ème Colloque de l’Association Internationale de Climatologie, pp 325–330

  • Lankinen A, Smith HG, Andersson S, Madjidian JA (2016) Selection on pollen and pistil traits during pollen competition is affected by both sexual conflict and mixed mating in a self-compatible herb. Am J Bot 103(3):541–552

    Article  CAS  PubMed  Google Scholar 

  • Leigh C, Bush A, Harrison ET et al (2015) Ecological effects of extreme climatic events on riverine ecosystems: insights from Australia. Freshw Biol 60:2620–2638. doi:10.1111/fwb.12515

    Article  Google Scholar 

  • Link WA, Barker RJ (2006) Model weights and the foundations of multimodel inference. Ecology 87:2626–2635

    Article  PubMed  Google Scholar 

  • López-Roig M, Serra-Cobo J (2014) Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus). Popul Ecol 56:471–480. doi:10.1007/s10144-014-0437-2

    Article  Google Scholar 

  • Lučan RK, Weiser M, Hanák V (2013) Contrasting effects of climate change on the timing of reproduction and reproductive success of a temperate insectivorous bat: climate change and reproduction of a temperate bat. J Zool 290:151–159. doi:10.1111/jzo.12021

    Article  Google Scholar 

  • Lukacs PM, Burnham KP, Anderson DR (2010) Model selection bias and Freedman’s paradox. Ann Inst Stat Math 62:117–125. doi:10.1007/s10463-009-0234-4

    Article  Google Scholar 

  • Masciocchi M, Pereira AJ, Corley JC (2016) Local dynamics of worker activity of the invasive Vespula germanica and V. vulgaris (Hymenoptera: Vespidae) wasps in Argentina: activity fluctuations of Vespula spp. in Argentina. Ecol Entomol 41:105–111. doi:10.1111/een.12277

    Article  Google Scholar 

  • McLean N, Lawson CR, Leech DI, van de Pol M (2016) Predicting when climate-driven phenotypic change affects population dynamics. Ecol Lett 19:595–608. doi:10.1111/ele.12599

    Article  PubMed  Google Scholar 

  • Metz J, Tielboerger K (2016) Spatial and temporal aridity gradients provide poor proxies for plant-plant interactions under climate change: a large-scale experiment. Funct Ecol 30:20–29. doi:10.1111/1365-2435.12599

    Article  Google Scholar 

  • Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132:492–500

    Article  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi:10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  • Nouvellet P, Newman C, Buesching CD, Macdonald DW (2013) A multi-metric approach to investigate the effects of weather conditions on the demographic of a terrestrial mammal, the european badger (Meles meles). PLoS One 8:e68116. doi:10.1371/journal.pone.0068116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hara RB, Kotze DJ (2010) Do not log-transform count data. Methods Ecol Evol 1:118–122. doi:10.1111/j.2041-210X.2010.00021.x

    Article  Google Scholar 

  • Parent CJ, Hernández F, Brennan LA et al (2016) Northern bobwhite abundance in relation to precipitation and landscape structure: mapping Northern bobwhite. J Wildl Manag 80:7–18. doi:10.1002/jwmg.992

    Article  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691

    Article  Google Scholar 

  • Peterman WE, Semlitsch RD (2014) Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics. Oecologia 176:357–369. doi:10.1007/s00442-014-3041-4

    Article  CAS  PubMed  Google Scholar 

  • Puechmaille SJ, Petit EJ (2007) Empirical evaluation of non-invasive capture-mark-recapture estimation of population size based on a single sampling session: non-invasive capture-mark-recapture. J Appl Ecol 44:843–852. doi:10.1111/j.1365-2664.2007.01321.x

    Article  Google Scholar 

  • Radchuk V, Johst K, Groeneveld J et al (2014) Appropriate resolution in time and model structure for population viability analysis: insights from a butterfly metapopulation. Biol Conserv 169:345–354. doi:10.1016/j.biocon.2013.12.004

    Article  Google Scholar 

  • Ray D, Behera MD, Jacob J (2016) Predicting the distribution of rubber trees (Hevea brasiliensis) through ecological niche modelling with climate, soil, topography and socioeconomic factors. Ecol Res 31:75–91. doi:10.1007/s11284-015-1318-7

    Article  Google Scholar 

  • Rebelo H, Tarroso P, Jones G (2010) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob Change Biol 16:561–576

    Article  Google Scholar 

  • Reiter G (2004a) Postnatal growth and reproductive biology of Rhinolophus hipposideros (Chiroptera: Rhinolophidae). J Zool 262:231–241. doi:10.1017/S0952836903004588

    Article  Google Scholar 

  • Reiter G (2004b) The importance of woodland for Rhinolophus hipposideros (Chiroptera, Rhinolophidae) in Austria. Mamm Mamm 68:403–410

    Google Scholar 

  • Sæther B-E, Tufto J, Engen S et al (2000) Population dynamical consequences of climate change for a small temperate songbird. Science 287:854–856. doi:10.1126/science.287.5454.854

    Article  PubMed  Google Scholar 

  • Saether BE, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. In: Moller AP, Fielder W, Berthold P (eds) Birds and climate change. Elsevier Science Ltd, London, pp 185–209

    Chapter  Google Scholar 

  • Satterthwaite WH, Kitaysky AS, Mangel M (2012) Linking climate variability, productivity and stress to demography in a long-lived seabird. Mar Ecol Prog Ser 454:221–235. doi:10.3354/meps09539

    Article  Google Scholar 

  • Schorcht W, Bontadina F, Schaub M (2009) Variation of adult survival drives population dynamics in a migrating forest bat. J Anim Ecol 78:1182–1190. doi:10.1111/j.1365-2656.2009.01577.x

    Article  PubMed  Google Scholar 

  • Seckerdieck A, Walther B, Halle S (2005) Alternative use of two different roost types by a maternity colony of the lesser horseshoe bat (Rhinolophus hipposideros). Mamm Biol 70:201–209. doi:10.1016/j.mambio.2004.10.002

    Article  Google Scholar 

  • Şekercioğlu ÇH, Primack RB, Wormworth J (2012) The effects of climate change on tropical birds. Biol Conserv 148:1–18. doi:10.1016/j.biocon.2011.10.019

    Article  Google Scholar 

  • Spiller DA, Schoener TW (2008) Climatic control of trophic interaction strength: the effect of lizards on spiders. Oecologia 154:763–771. doi:10.1007/s00442-007-0867-z

    Article  PubMed  Google Scholar 

  • Taylor LR (1963) Analysis of the effect of temperature on insects in flight. J Anim Ecol 32:99–117. doi:10.2307/2520

    Article  Google Scholar 

  • Thomas JA, Moss D, Pollard E (1994) Increased fluctuations of butterfly populations towards the northern edges of species’ ranges. Ecography 17:215–220. doi:10.1111/j.1600-0587.1994.tb00096.x

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Townsend AK, Cooch EG, Sillett TS et al (2016) The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird. Glob Change Biol 22:544–555. doi:10.1111/gcb.13053

    Article  Google Scholar 

  • Turner MG, Dale VH, Gardner RH (1989) Predicting across scales: theory development and testing. Landsc Ecol 3:245–252

    Article  Google Scholar 

  • Uhrin M, Hüttmeir U, Kipson M et al (2016) Status of Savi’s pipistrelle Hypsugo savii (Chiroptera) and range expansion in Central and south-eastern Europe: a review. Mammal Rev 46:1–16. doi:10.1111/mam.12050

    Article  Google Scholar 

  • Urban MC, Bocedi G, Hendry AP et al (2016) Improving the forecast for biodiversity under climate change. Science 353:1113. doi:10.1126/science.aad8466

    Article  CAS  Google Scholar 

  • Van de Pol M, Vindenes Y, Sæther B-E et al (2010) Effects of climate change and variability on population dynamics in a long-lived shorebird. Ecology 91:1192–1204

    Article  PubMed  Google Scholar 

  • Van de Pol M, Bailey LD, McLean N et al (2016) Identifying the best climatic predictors in ecology and evolution. Methods Ecol Evol. doi:10.1111/2041-210X.12590

    Google Scholar 

  • Van der Wal J, Beaumont L, Zimmerman N, Lorch P (2014) Climates: methods for working with weather and climate. R package version 0.1–1.6

  • Voigt CC, Schneeberger K, Voigt-Heucke SL, Lewanzik D (2011) Rain increases the energy cost of bat flight. Biol Lett 7:793–795. doi:10.1098/rsbl.2011.0313

    Article  PubMed  PubMed Central  Google Scholar 

  • White TCR (2008) The role of food, weather and climate in limiting the abundance of animals. Biol Rev 83:227–248. doi:10.1111/j.1469-185X.2008.00041.x

    Article  CAS  PubMed  Google Scholar 

  • Williams CB (1951) Changes in insect populations in the field in relation to preceding weather conditions. Proc R Soc Lond B Biol Sci 138:130–156. doi:10.1098/rspb.1951.0011

    Article  CAS  PubMed  Google Scholar 

  • Wu J (2016) Detection and attribution of the effects of climate change on bat distributions over the last 50 years. Clim Change 134:681–696. doi:10.1007/s10584-015-1543-7

    Article  Google Scholar 

  • Xu T, Hutchinson MF (2013) New developments and applications in the ANUCLIM spatial climatic and bioclimatic modelling package. Environ Model Softw 40:267–279. doi:10.1016/j.envsoft.2012.10.003

    Article  Google Scholar 

  • Zahn A (1999) Reproductive success, colony size and roost temperature in attic-dwelling bat Myotis myotis. J Zool 247:275–280

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ et al (2009) Zero-truncated and zero-inflated models for count data. Mixed effects models and extensions in ecology with R. Springer, New York, pp 261–293

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions

OF and JB provided count data. ELT and AB developed methodology. PLJ, PLG, SJP and EJP analyzed the data. PLJ, PLG, SJP and EJP wrote the manuscript.

Corresponding author

Correspondence to Pierre-Loup Jan.

Additional information

Communicated by Christian Voigt.

Determining the temporal resolution of climatic variables when identifying their impact on wild population abundance is a rising concern. Our work proposes a way free of most assumptions for doing it.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, PL., Farcy, O., Boireau, J. et al. Which temporal resolution to consider when investigating the impact of climatic data on population dynamics? The case of the lesser horseshoe bat (Rhinolophus hipposideros). Oecologia 184, 749–761 (2017). https://doi.org/10.1007/s00442-017-3901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3901-9

Keywords

Navigation