Advertisement

Oecologia

, Volume 184, Issue 2, pp 497–506 | Cite as

Colonization by nitrogen-fixing Frankia bacteria causes short-term increases in herbivore susceptibility in red alder (Alnus rubra) seedlings

  • Daniel J. Ballhorn
  • Jacob D. Elias
  • M. A. Balkan
  • Rachel F. Fordyce
  • Peter G. Kennedy
Plant-microbe-animal interactions - original research

Abstract

Carbon allocation demands from root-nodulating nitrogen-fixing bacteria (NFB) can modulate the host plant’s chemical phenotype, with strong bottom–up effects on herbivores. In contrast to well-studied rhizobia, the effects of other important NFB on plant chemistry and herbivory are much less understood. Here, combining field surveys in the Oregon Coast Range, USA with laboratory experiments, we analyzed how N2-fixing Frankia bacteria influenced plant growth, chemistry, and herbivory on Alnus rubra (red alder) seedlings. In the field, we quantified Frankia nodulation, herbivore damage, and plant size. In the laboratory, we grew seedlings with Frankia (F+), Frankia-free but nitrogen-fertilized (N+), or both uncolonized and unfertilized (F−N−) and assessed growth and leaf chemistry. We further conducted choice trials with black slugs, Arion rufus, a natural red alder herbivore. In the field, Frankia nodulation was significantly positively correlated with herbivory and negatively with seedling height. In contrast, in the lab, F+ as well as N+ seedlings were significantly taller than the F−N− controls. Seedlings from both treatments also had significantly increased leaf protein concentration compared to controls, whereas carbon-based nutritive compounds (carbohydrates) as well as leaf palatability-decreasing condensed tannins, lignin, and fiber were decreased in F+ but not in N+ treatments. In the choice assays, slugs preferred leaf material from F+ seedlings, but the effects were only significant in young leaves. Our study indicates that colonization by Frankia causes short-term ecological costs in terms of susceptibility to herbivory. However, the ubiquity of this symbiosis in natural settings suggests that these costs are outweighed by benefits beyond the seedling stage.

Keywords

Trophic interactions Ecological costs Nitrogen fixation Condensed tannins Pacific Northwest Plant defense Plant–herbivore interactions 

Notes

Acknowledgements

The authors thank V. Engebretson for assistance with experimental setup and maintenance. Funding was provided by the National Science Foundation (IOS # 1457369 and IOS # 1656057 to DJB and DEB # 1020735 to PGK).

Author contribution statement

DJB and PGK conceived and designed the experiments. DJB, PGK, and RFF performed the experiments. DJB, PGK, and JDE analyzed the data. DJB, PGK, JDE, and MAB co-wrote the manuscript.

References

  1. Arnone JA, Gordon JC (1990) Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubra Bong. New Phytol 116:55–66. doi: 10.1111/j.1469-8137.1990.tb00510.x CrossRefGoogle Scholar
  2. Ballhorn DJ, Kautz S, Lion U, Heil M (2008) Trade-offs between direct and indirect defences of lima bean (Phaseolus lunatus). J Ecol 96:971–980. doi: 10.1111/j.1365-2745.2008.01404.x CrossRefGoogle Scholar
  3. Ballhorn DJ, Kautz S, Schädler M (2013) Induced plant defense via volatile production is dependent on rhizobial symbiosis. Oecologia 172:833–846. doi: 10.1007/s00442-012-2539-x CrossRefPubMedGoogle Scholar
  4. Barbehenn RV, Constabel CP (2011) Tannins in plant–herbivore interactions. Phytochemistry 72:1551–1565. doi: 10.1016/j.phytochem.2011.01.040 CrossRefPubMedGoogle Scholar
  5. Benson DR, Dawson JO (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330. doi: 10.1111/j.1399-3054.2007.00934.x CrossRefGoogle Scholar
  6. Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624. doi: 10.1016/j.tree.2005.08.006 CrossRefPubMedGoogle Scholar
  7. Carney KM, Matson PA (2005) Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning? Ecosystems 8:928–940. doi: 10.1007/s10021-005-0047-0 CrossRefGoogle Scholar
  8. Chapin FS, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37:49–57. doi: 10.2307/1310177 CrossRefGoogle Scholar
  9. Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899. doi: 10.1126/science.230.4728.895 CrossRefPubMedGoogle Scholar
  10. Concon JM, Soltess D (1973) Rapid micro Kjeldahl digestion of cereal grains and other biological materials. Anal Biochem 53:35–41. doi: 10.1016/0003-2697(73)90405-3 CrossRefPubMedGoogle Scholar
  11. Crouch GL (1976) Deer and reforestation in the Pacific Northwest. In: Proc 7th Vertebr Pest Conf 1976, pp 298–301Google Scholar
  12. Finke RL, Harper JE, Hageman RH (1982) Efficiency of nitrogen assimilation by N2-fixing and nitrate-grown soybean plants (Glycine max [L.] Merr.). Plant Physiol 70:1178–1184CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fritz RS, Hochwender CG, Lewkiewicz DA, Bothwell S, Orians CM (2001) Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance. Oecologia 129:87–97. doi: 10.1007/s004420100703 CrossRefPubMedGoogle Scholar
  14. Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051–1055. doi: 10.1046/j.1461-0248.2003.00540.x CrossRefGoogle Scholar
  15. Gara RI, Jaeck LL (1978) Insect pests of red alder (Alnus rubra): potential problems. In: DG Briggs, DS DeBell, WA Atkinson (compilers), Utilization and management of alder. USDA Forest Service, Portland, OR. General Technical Report PNW-70, pp 265–269Google Scholar
  16. Gehring CA (2003) Growth responses to arbuscular mycorrhizae by rain forest seedlings vary with light intensity and tree species. Plant Ecol 167:127–139. doi: 10.1023/A:1023989610773 CrossRefGoogle Scholar
  17. Giertych MJ, Karolewski P, Zytkowiak R, Oleksyn J (2006) Differences in defence strategies against herbivores between two pioneer tree species: Alnus glutinosa (L.) Gaertn. and Betula pendula Roth. Pol J Ecol 54:181–187Google Scholar
  18. Godschalx AL, Schädler M, Trisel JA, Balkan MA, Ballhorn DJ (2015) Ants are less attracted to the extrafloral nectar of plants with symbiotic, nitrogen-fixing rhizobia. Ecology 96:348–354. doi: 10.1890/14-1178.1 CrossRefPubMedGoogle Scholar
  19. González-Hernández MP, Starkey EE, Karchesy J (2000) Seasonal variation in concentrations of fiber, crude protein, and phenolic compounds in leaves of red alder (Alnus rubra): nutritional mplications for Cervids. J Chem Ecol 26:293–301. doi: 10.1023/A:1005462100010 CrossRefGoogle Scholar
  20. Goverde M, Van der Heijden MGA, Wiemken A, Sanders I, Erhardt A (2000) Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125:362–369. doi: 10.1007/s004420000465 CrossRefPubMedGoogle Scholar
  21. Hassid WZ (1937) Determination of sugars in plants by oxidation with ferricyanide and ceric sulfate titration. Ind Eng Chem Res 9:228–229Google Scholar
  22. Hempel S, Stein C, Unsicker SB, Renker C, Auge H, Weisser W, Buscot F (2009) Specific bottom-up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid system. Oecologia 160:267–277. doi: 10.1007/s00442-009-1294-0 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hendrickson OQ, Fogal WH, Burgess D (1991) Growth and resistance to herbivory in N2-fixing alders. Can J Bot 69:1919–1926. doi: 10.1139/b91-241 CrossRefGoogle Scholar
  24. Hendrickson OQ, Burgess D, Perinet P, Tremblay F, Chatatpaul L (1993) Effects of Frankia on field performance of Alnus clones and seedlings. Plant Soil 150:295–302. doi: 10.1007/BF00013027 CrossRefGoogle Scholar
  25. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335. doi: 10.1086/417659 CrossRefGoogle Scholar
  26. Huss-Danell K (1997) Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405. doi: 10.1046/j.1469-8137.1997.00755.x CrossRefGoogle Scholar
  27. Jenkins KJ, Starkey EE (1991) Food habits of Roosevelt elk. Rangel Arch 13:261–265Google Scholar
  28. Julkunen-Tiitto R, Rousi M, Bryant J, Sorsa S, Keinänen M, Sikanen H (1996) Chemical diversity of several Betulaceae species: comparison of phenolics and terpenoids in northern birch stems. Trees 11:16–22. doi: 10.1007/s004680050053 CrossRefGoogle Scholar
  29. Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller K (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244. doi: 10.1016/j.soilbio.2009.03.005 CrossRefGoogle Scholar
  30. Kempel A, Brandl R, Schädler M (2009) Symbiotic soil microorganisms as players in aboveground plant–herbivore interactions—the role of rhizobia. Oikos 118:634–640. doi: 10.1111/j.1600-0706.2009.17418.x CrossRefGoogle Scholar
  31. Koo CD (1989) Water stress, fertilization and light effects on the growth of nodulated, mycorrhizal red alder seedlings. PhD Dissertation, Department of Forest Science, Oregon State University, Corvallis, Oregon, USAGoogle Scholar
  32. Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097. doi: 10.1890/08-1555.1 CrossRefPubMedGoogle Scholar
  33. Lauren HZG, Whitlow WL (2012) Ecological effects of invasive slugs, Arion rufus, on native Cascade Oregon Grape, Mahonia nervosa. Northwest Sci 86:1–8. doi: 10.3955/046.086.0101 CrossRefGoogle Scholar
  34. Loney PE, McArthur C, Potts BM, Jordan GJ (2006) How does ontogeny in a Eucalyptus species affect patterns of herbivory by Brushtail Possums? Funct Ecol 20:982–988. doi: 10.1111/j.1365-2435.2006.01193.x CrossRefGoogle Scholar
  35. Lucas PW, Turner IM, Dominy NJ, Yamashita N (2000) Mechanical defences to herbivory. Ann Bot 86:913–920. doi: 10.1006/anbo.2000.1261 CrossRefGoogle Scholar
  36. Malishev M, Sanson GD (2015) Leaf mechanics and herbivory defence: how tough tissue along the leaf body deters growing insect herbivores. Austral Ecol 40:300–308. doi: 10.1111/aec.12214 CrossRefGoogle Scholar
  37. Millar JA, Ballhorn DJ (2013) Effect of mycorrhizal colonization and light limitation on growth and reproduction of lima bean (Phaseolus lunatus L.). J Appl Bot Food Qual 86:172–179. doi: 10.5073/JABFQ.2013.086.023 Google Scholar
  38. Mølgaard P (1986) Food plant preferences by slugs and snails: a simple method to evaluate the relative palatability of the food plants. Biochem Syst Ecol 14:113–121. doi: 10.1016/0305-1978(86)90095-5 CrossRefGoogle Scholar
  39. Monaco PA, Ching KK, Ching T (1982) Host-endophyte effects on biomass production and nitrogen fixation in Alnus rubra actinorhizal symbiosis. Bot Gaz 143(3):298–303. doi: 10.1086/337304.0 CrossRefGoogle Scholar
  40. Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. doi: 10.1016/j.pbi.2007.05.004 CrossRefPubMedGoogle Scholar
  41. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  42. Radwan MA, Ellis WD, Walter D, Crouch GL, et al (1978) Chemical composition and deer browsing of red alder foliage. Portland, Or. : Pacific Northwest Forest and Range Experiment Station, US Dept. of Agriculture, Forest ServiceGoogle Scholar
  43. Raupp MJ (1985) Effects of leaf toughness on mandibular wear of the leaf beetle, Plagiodera versicolora. Ecol Entomol 10:73–79. doi: 10.1111/j.1365-2311.1985.tb00536.x CrossRefGoogle Scholar
  44. Resch H (1980) Utilization of red alder in the Pacific Northwest. For Prod J 30:21–26Google Scholar
  45. Schwintzer CR, Tjepkema JD (1990) The biology of Frankia and actinorhizal plants, 1st edn. Academic Press, CambridgeGoogle Scholar
  46. Smith D, Paulsen GM, Raguse CA (1964) Extraction of total available carbohydrates from grass and legume tissue. Plant Physiol 39:960–962CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sprent JI (2001) Nodulation in legumes. Royal Botanical Gardens, KewGoogle Scholar
  48. Sprent JI, Sprent P (1990) Nitrogen fixing organisms: Pure and applied aspects, 1st edn. Chapman and Hall, New YorkCrossRefGoogle Scholar
  49. Teissier du Cros E, Jung G, Bariteau M (1984) Alder-Frankia interaction and alder-poplar association for biomass production. Plant Soil 78:235–243. doi: 10.1007/BF02277854 CrossRefGoogle Scholar
  50. Thamer S, Schädler M, Bonte D, Ballhorn DJ (2011) Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 341:209–219. doi: 10.1007/s11104-010-0635-4 CrossRefGoogle Scholar
  51. Tikkanen O-P, Julkunen-Tiitto R (2003) Phenological variation as protection against defoliating insects: the case of Quercus robur and Operophtera brumata. Oecologia 136:244–251. doi: 10.1007/s00442-003-1267-7 CrossRefPubMedGoogle Scholar
  52. Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi: 10.1111/j.1461-0248.2007.01139.x CrossRefPubMedGoogle Scholar
  53. Van der Putten WH, Vet LEM, Harvey JA, Wäckers FL (2001) Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554. doi: 10.1016/S0169-5347(01)02265-0 CrossRefGoogle Scholar
  54. Van Soest PJ (1963) Use of detergents in analysis of fibrous feeds. J Assoc Off Anal Chem 46(5):829–835Google Scholar
  55. War AR, Paulraj MG, Ahmad T, Buhroo A, Hussain B, Ignacimuthu S, Sharma I (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320. doi: 10.4161/psb.21663 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wright DP, Read DJ, Scholes JD (1998) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891. doi: 10.1046/j.1365-3040.1998.00351.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Daniel J. Ballhorn
    • 1
  • Jacob D. Elias
    • 1
    • 2
  • M. A. Balkan
    • 1
  • Rachel F. Fordyce
    • 1
    • 3
  • Peter G. Kennedy
    • 4
  1. 1.Department of BiologyPortland State UniversityPortlandUSA
  2. 2.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  3. 3.Department of Plant BiologyUniversity of CaliforniaDavisUSA
  4. 4.Department of Plant BiologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations