Advertisement

Oecologia

, Volume 184, Issue 2, pp 423–430 | Cite as

Relative predation risk and risk of desiccation co-determine oviposition preferences in Cope’s gray treefrog, Hyla chrysoscelis

  • Matthew R. Pintar
  • William J. ResetaritsJr.
Behavioral ecology – original research

Abstract

Habitat permanence and threat of predation are primary drivers of community assembly and composition in lentic freshwater systems. Pond-breeding amphibians select oviposition sites to maximize fitness and minimize risks of predation and desiccation of their offspring, typically facing a trade-off between the two as predation risk often increases as desiccation risk decreases. To experimentally determine if Hyla chrysoscelis partition oviposition along gradients of relative desiccation risk and predation risk, we tested oviposition site preference in a natural population of treefrogs colonizing experimental ponds that varied in water depth and contained predatory larvae of two Ambystoma salamander species. Hyla chrysoscelis selected habitats with both lower predation risk, avoiding A. talpoideum over A. maculatum, and lower desiccation risk, selecting ponds with three times greater depth. We demonstrate that adult oviposition site choices simultaneously minimize relative predation risk and desiccation risk and that closely related salamander species produce functionally different responses among colonizing animals.

Keywords

Community assembly Functional diversity Habitat selection Hyla Temporary ponds 

Notes

Acknowledgements

J. Bohenek and L. Eveland assisted with fieldwork. T. Breech provided helpful comments on the manuscript. Support was provided by the University of Mississippi and the Henry L. and Grace Doherty Foundation. This research was approved by the University of Mississippi’s Institutional Animal Care and Use Committee (14-027) and the Mississippi Department of Wildlife, Fisheries, and Parks (0624141). The authors declare no conflicts of interest.

Author contribution statement

MRP conceived, designed, and conducted the experiment. MRP analyzed the data and wrote the manuscript with input from WJR. Both authors gave final approval for publication.

References

  1. Altig R, McDiarmid RW (2015) Handbook of larval amphibians of the United States and Canada. Cornell University Press, IthacaGoogle Scholar
  2. Anderson TL, Mott CL, Levine TD, Whiteman HH (2013) Life cycle complexity influences intraguild predation and cannibalism in pond communities. Copeia 2013:284–291. doi: 10.1643/CE-12-034 CrossRefGoogle Scholar
  3. Binckley CA, Resetarits WJ Jr (2003) Functional equivalence of non-lethal effects: generalized fish avoidance determines distribution of gray treefrog, Hyla chrysoscelis, larvae. Oikos 102:623–629. doi: 10.1034/j.1600-0706.2003.12483.x CrossRefGoogle Scholar
  4. Binckley CA, Resetarits WJ Jr (2008) Oviposition behavior partitions aquatic landscapes along predation and nutrient gradients. Behav Ecol 19:552–557. doi: 10.1093/beheco/arm164 CrossRefGoogle Scholar
  5. Blaustein L, Kotler BP, Ward D (1995) Direct and indirect effects of a predatory backswimmer (Notonecta maculata) on community structure of desert temporary pools. Ecol Entomol 20:311–318. doi: 10.1111/j.1365-2311.1995.tb00462.x CrossRefGoogle Scholar
  6. Blaustein L, Kiflawi M, Eitam A et al (2004) Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue. Oecologia 138:300–305. doi: 10.1007/s00442-003-1398-x CrossRefPubMedGoogle Scholar
  7. Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83. doi: 10.1038/nature04539 CrossRefPubMedGoogle Scholar
  8. Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639. doi: 10.2307/1309989 CrossRefGoogle Scholar
  9. DeWitt TJ, Robinson BW, Wilson DS (2000) Functional diversity among predators of a freshwater snail imposes an adaptive trade-off for shell morphology. Evol Ecol Res 2:129–148Google Scholar
  10. Grabowski JH, Hughes AR, Kimbro DL (2008) Habitat complexity influences cascading effects of multiple predators. Ecology 89:3413–3422. doi: 10.1890/07-1057.1 CrossRefPubMedGoogle Scholar
  11. Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference-performance relationships in phytophagous insects. Ecol Lett 13:383–393. doi: 10.1111/j.1461-0248.2009.01433.x CrossRefPubMedGoogle Scholar
  12. Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities—the roles of biotic, abiotic, and spatial factors. Can J Fish Aquat Sci 58:157–170. doi: 10.1139/f00-239 Google Scholar
  13. Jaenike J (1978) On optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14:350–356. doi: 10.1016/0040-5809(78)90012-6 CrossRefPubMedGoogle Scholar
  14. Kats LB, Sih A (1992) Oviposition site selection and avoidance of fish by streamside salamanders (Ambystoma barbouri). Copeia 1992:468–473. doi: 10.2307/1446206 CrossRefGoogle Scholar
  15. Kiflawi M, Blaustein L, Mangel M (2003) Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density. Ecol Entomol 28:168–173. doi: 10.1046/j.1365-2311.2003.00505.x CrossRefGoogle Scholar
  16. Kraus JM, Vonesh JR (2010) Feedbacks between community assembly and habitat selection shape variation in local colonization. J Anim Ecol 79:795–802. doi: 10.1111/j.1365-2656.2010.01684.x PubMedGoogle Scholar
  17. Martin TE (2001) Abiotic vs. biotic influences on habitat selection of coexisting species: climate change impacts? Ecology 82:175–188. doi:10.1890/0012-9658(2001)082[0175:AVBIOH]2.0.CO;2Google Scholar
  18. McGuffin MA, Baker RL, Forbes MR (2006) Detection and avoidance of fish predators by adult Enallagma damselflies. J Insect Behav 19:77–91. doi: 10.1007/s10905-005-9013-0 CrossRefGoogle Scholar
  19. Menge BA, Sutherland JP (1987) Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am Nat 130:730–757. doi: 10.1086/284741 CrossRefGoogle Scholar
  20. Messina FJ, Kemp JL, Dickinson JA (1992) Plasticity in the egg-spacing behavior of a seed beetle: effects of host deprivation and seed patchiness (Coleoptera: Bruchidae). J Insect Behav 5:609–621. doi: 10.1007/BF01048008 CrossRefGoogle Scholar
  21. Morin PJ, Lawler SP, Johnson EA (1988) Competition between aquatic insects and vertebrates: interaction strength and higher order interactions. Ecology 69:1401–1409. doi: 10.2307/1941637 CrossRefGoogle Scholar
  22. Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75CrossRefGoogle Scholar
  23. Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, DCGoogle Scholar
  24. Petranka JW, Kats LB, Sih A (1987) Predator-prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish. Anim Behav 35:420–425. doi: 10.1016/S0003-3472(87)80266-X CrossRefGoogle Scholar
  25. Pintar MR, Resetarits WJ Jr (2017a) Out with the old, in with the new: oviposition preference matches larval success in Cope’s gray treefrog, Hyla chrysoscelis. J Herpetol 51:186–189. doi: 10.1670/16-019 CrossRefGoogle Scholar
  26. Pintar MR, Resetarits WJ Jr (2017b) Data for “Relative predation risk and risk of desiccation co-determine oviposition preferences in Cope’s gray treefrog, Hyla chrysoscelis”. Figshare. doi: 10.6084/m9.figshare.4887020 Google Scholar
  27. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  28. Resetarits WJ Jr (2001) Colonization under threat of predation: avoidance of fish by an aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae). Oecologia 129:155–160. doi: 10.1007/S004420100704 CrossRefPubMedGoogle Scholar
  29. Resetarits WJ Jr (2005) Habitat selection behaviour links local and regional scales in aquatic systems. Ecol Lett 8:480–486. doi: 10.1111/j.1461-0248.2005.00747.x CrossRefPubMedGoogle Scholar
  30. Resetarits WJ Jr, Binckley CA (2009) Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology 90:869–876. doi: 10.1890/08-0613.1 CrossRefPubMedGoogle Scholar
  31. Resetarits WJ Jr, Binckley CA (2013) Is the pirate really a ghost? Evidence for generalized chemical camouflage in an aquatic predator, pirate perch Aphredoderus sayanus. Am Nat 181:690–699. doi: 10.1086/670016 CrossRefPubMedGoogle Scholar
  32. Resetarits WJ Jr, Chalcraft DR (2007) Functional diversity within a morphologically conservative genus of predators: implications for functional equivalence and redundancy in ecological communities. Funct Ecol 21:793–804. doi: 10.1111/j.1365-2435.2007.01282.x CrossRefGoogle Scholar
  33. Resetarits WJ Jr, Pintar MR (2016) Functional diversity of non-lethal effects, chemical camouflage, and variation in fish avoidance in colonizing beetles. Ecology 97:3517–3529. doi: 10.1002/ecy.1593 CrossRefPubMedGoogle Scholar
  34. Resetarits WJ Jr, Wilbur HM (1989) Choice of oviposition site by Hyla chrysoscelis: role of predators and competitors. Ecology 70:220–228. doi: 10.2307/1938428 CrossRefGoogle Scholar
  35. Resetarits WJ Jr, Wilbur HM (1991) Calling site choice by Hyla chrysoscelis: effect of predators, competitors, and oviposition sites. Ecology 72:778–786. doi: 10.2307/1940580 CrossRefGoogle Scholar
  36. Rieger JF, Binckley CA, Resetarits WJ Jr (2004) Larval performance and oviposition site preference along a predation gradient. Ecology 85:2094–2099. doi: 10.1890/04-0156 CrossRefGoogle Scholar
  37. Rudolf VHW, Rödel M-O (2005) Oviposition site selection in a complex and variable environment: the role of habitat quality and conspecific cues. Oecologia 142:316–325. doi: 10.1007/s00442-004-1668-2 CrossRefPubMedGoogle Scholar
  38. Růžička Z (2001) Oviposition responses of aphidophagous coccinellids to tracks of ladybird (Coleoptera: Coccinellidae) and lacewing (Neuroptera: Chrysopidae) larvae. Eur J Entomol 98:183–188. doi: 10.14411/eje.2001.034 CrossRefGoogle Scholar
  39. Saward-Arav D, Sadeh A, Mangel M et al (2016) Oviposition responses of two mosquito species to pool size and predator presence: varying trade-offs between desiccation and predation risks. Isr J Ecol Evol. doi: 10.1080/15659801.2015.1069113 Google Scholar
  40. Schmitz OJ (2009) Effects of predator functional diversity on grassland ecosystem function. Ecology 90:2339–2345. doi: 10.1890/08-1919.1 CrossRefPubMedGoogle Scholar
  41. Schmitz OJ, Sokol-Hessner L (2002) Linearity in the aggregate effects of multiple predators in a food web. Ecol Lett 5:168–172. doi: 10.1046/j.1461-0248.2002.00311.x CrossRefGoogle Scholar
  42. Schneider DW, Frost TM (1996) Habitat duration and community structure in temporary ponds. J N Am Benthol Soc 15:64–86. doi: 10.2307/1467433 CrossRefGoogle Scholar
  43. Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392. doi: 10.1016/j.aquatox.2004.03.016 CrossRefPubMedGoogle Scholar
  44. Segev O, Mangel M, Wolf N et al (2011) Spatiotemporal reproductive strategies in the fire salamander: a model and empirical test. Behav Ecol 22:670–678. doi: 10.1093/beheco/arr029 CrossRefGoogle Scholar
  45. Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355. doi: 10.1016/S0169-5347(98)01437-2 CrossRefPubMedGoogle Scholar
  46. Silberbush A, Blaustein L (2011) Mosquito females quantify risk of predation to their progeny when selecting an oviposition site. Funct Ecol 25:1091–1095. doi: 10.1111/j.1365-2435.2011.01873.x CrossRefGoogle Scholar
  47. Skelly DK (1996) Pond drying, predators, and the distribution of Pseudacris tadpoles. Copeia 3:599–605. doi: 10.2307/1447523 CrossRefGoogle Scholar
  48. Spencer M, Blaustein L (2001) Hatching responses of temporary pool invertebrates to signals of environmental quality. Isr J Zool 47:397–418. doi: 10.1560/23F2-2XBW-252B-DU5C CrossRefGoogle Scholar
  49. Thompson JN, Pellmyr O (1991) Evolution of oviposition behavoir and host preference in Lepidoptera. Annu Rev Entomol 36:65–89. doi: 10.1146/annurev.en.36.010191.000433 CrossRefGoogle Scholar
  50. Touchon JC, Warkentin KM (2008) Reproductive mode plasticity: aquatic and terrestrial oviposition in a treefrog. Proc Natl Acad Sci 105:7495–7499. doi: 10.1073/pnas.0711579105 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Touchon JC, Warkentin KM (2009) Negative synergism of rainfall patterns and predators affects frog egg survival. J Anim Ecol 78:715–723. doi: 10.1111/j.1365-2656.2009.01548.x CrossRefPubMedGoogle Scholar
  52. Tumlison R, Serviss B (2013) Novel Food habits of branchiate mole salamanders (Ambystoma talpoideum) from Southwestern Arkansas. Southeast Nat 12:579–588. doi: 10.1656/058.012.0312 CrossRefGoogle Scholar
  53. Vonesh JR, Blaustein L (2010) Predator-induced shifts in mosquito oviposition site selection: a meta-analysis and implications for vector control. Isr J Ecol Evol 56:263–279. doi: 10.1560/IJEE.56.3-4.263 CrossRefGoogle Scholar
  54. Vonesh JR, Kraus JM, Rosenberg JS, Chase JM (2009) Predator effects on aquatic community assembly: disentangling the roles of habitat selection and post-colonization processes. Oikos 118:1219–1229. doi: 10.1111/j.1600-0706.2009.17369.x CrossRefGoogle Scholar
  55. Walls SC (1996) Differences in foraging behaviour explain interspecific growth inhibition in competing salamanders. Anim Behav 52:1157–1162. doi: 10.1006/anbe.1996.0262 CrossRefGoogle Scholar
  56. Walters B (1975) Studies of interspecific predation within an amphibian community. J Herpetol 9:267–279. doi: 10.2307/1563191 CrossRefGoogle Scholar
  57. Wellborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363. doi: 10.1146/annurev.ecolsys.27.1.337 CrossRefGoogle Scholar
  58. Wilbur HM (1997) Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78:2279–2302. doi:10.1890/0012-9658(1997)078[2279:EEOFWC]2.0.CO;2Google Scholar
  59. Wilbur HM, Alford RA (1985) Priority effects in experimental pond communities: responses of Hyla to Bufo and Rana. Ecology 66:1106–1114. doi: 10.2307/1939162 CrossRefGoogle Scholar
  60. Wilbur HM, Collins JP (1973) Ecological aspects of amphibian metamorphosis. Science 182:1305–1314. doi: 10.1126/science.182.4119.1305 CrossRefPubMedGoogle Scholar
  61. Woodward BD (1983) Predator-prey interactions and breeding-pond use of temporary-pond species in a desert anuran community. Ecology 64:1549–1555. doi: 10.2307/1937509 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of MississippiUniversityUSA

Personalised recommendations