Skip to main content
Log in

Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks

  • Plant-microbe-animal interactions - original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AAF (2016) Maps of Mountain pine beetle in Alberta. http://www.agric.gov.ab.ca/app21/forestrypage?cat1=Mountain%20Pine%20Beetle%20in%20Alberta&cat2=Resources&cat3=Maps. Accessed on 18 Feb 2017

  • Bentz BJ, Boone C, Raffa KF (2015) Tree response and mountain pine beetle attack preference, reproduction and emergence timing in mixed whitebark and lodgepole pine stands. Agricul For Entomol 17:421–432

    Article  Google Scholar 

  • Bleiker K, Six D (2007) Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environ Entomol 36:1384–1396

    Article  CAS  PubMed  Google Scholar 

  • Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL et al (2010) Pheromone production in bark beetles. Ins Biochem Mol Biol 40:699–712

    Article  CAS  Google Scholar 

  • Boone CK, Aukema BH, Bohlmann J, Carroll AL, Raffa KF (2011) Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Can J For Res 41:1174–1188

    Article  Google Scholar 

  • Borden JH, Ryker LC, Chong LJ, Pierce HD, Johnston BD, Oehlachlager AC (1987) Response of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Col: Scolytidae) to five semiochemicals in British Columbia lodgepole pine forests. Can J For Res 17:118–128

    Article  CAS  Google Scholar 

  • Borden JH, Pureswaran DS, Lafontaine JP (2008) Synergistic blends of monoterpenes for aggregation pheromones of the mountain pine beetle (Col: Curculionidae). J Econ Entomol 101:1266–1275

    Article  CAS  PubMed  Google Scholar 

  • Burke JL, Carroll AL (2016) The influence of variation in host tree monoterpene composition on secondary attraction by an invasive bark beetle: implications for range expansion and potential host shift by the mountain pine beetle. For Ecol Manag 359:59–64

    Article  Google Scholar 

  • Conn JE, Borden JH, Scott BE, Friskie LM, Pierce HD, Oehlschlager AC (1983) Semiochemicals for the mountain pine beetle, Dendroctonus ponderosae (Col: Scolytidae) in British Columbia: field trapping studies. Can J For Res 13:320–324

    Article  Google Scholar 

  • Emerick JJ, Snyder AI, Bower NW, Snyder MA (2008) Mountain pine beetle attack associated with low levels of 4-allylanisole in ponderosa pine. Environ Entomol 37:871–875

    Article  CAS  PubMed  Google Scholar 

  • Erbilgin N, Krokene P, Christiansen E, Zeneli G, Gershenzon J (2006) Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia 148:426–436

    Article  PubMed  Google Scholar 

  • Erbilgin N, Ma C, Whitehouse C, Shan B, Najar A, Evenden M (2014) Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem. New Phytol 201:940–950

    Article  PubMed  Google Scholar 

  • Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–376

    Article  CAS  PubMed  Google Scholar 

  • Ghimire B, Williams CA, Collatz GJ, Vanderhoof M, Rogan J, Kulakowski D et al (2015) Large carbon release legacy from bark beetle outbreaks across Western United States. Global Change Biol 21:3087–3101

    Article  Google Scholar 

  • Goodsman DW, Lusebrink I, Landhäusser SM, Erbilgin N, Lieffers VJ (2013) Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. New Phytol 197:586–594

    Article  CAS  PubMed  Google Scholar 

  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57:205–221

    Google Scholar 

  • Haukioja E, Neuvonen S (1985) Induced long-term resistance of birch foliage against defoliators: defensive or incidental? Ecology 66:1303–1308

    Article  Google Scholar 

  • Hawkins CD, Dhar A, Balliet NA, Runzer KD (2012) Residual mature trees and secondary stand structure after mountain pine beetle attack in central British Columbia. For Ecol Man 277:107–115

    Article  Google Scholar 

  • Hayes JL, Strom BL (1994) 4-Allylanisole as an inhibitor of bark beetle (Coleoptera: Scolytidae) aggregation. J Econ Entomol 87:1586–1594

    Article  CAS  Google Scholar 

  • Huber DPW, Gries R, Borden JH, Pierce HD Jr (2000) A survey of antennal responses by five species of coniferophagous bark beetles (Coleoptera: Scolytidae) to bark volatiles of six species of angiosperm trees. Chemoecology 10:103–113

    Article  CAS  Google Scholar 

  • Ishangulyyeva G, Najar A, Curtis JM, Erbilgin N (2016) Fatty Acid composition of novel host jack pine do not prevent host acceptance and colonization by the invasive mountain pine beetle and Its symbiotic fungus. PLoS One 11:e0162046

    Article  PubMed  PubMed Central  Google Scholar 

  • Kane JM, Kolb TE (2010) Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack. Oecologia 164:601–609

    Article  PubMed  Google Scholar 

  • Kausrud K, Økland B, Skarpaas O, Grégoire JC, Erbilgin N, Stenseth NC (2012) Population dynamics in changing environments: the case of an eruptive forest pest species. Biol Rev 87:34–51

    Article  PubMed  Google Scholar 

  • Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    Article  CAS  PubMed  Google Scholar 

  • Kempel A, Schädler M, Chrobock T, Fischer M, van Kleunen M (2011) Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc Nat Acad Sci USA 108:5685–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindgren B, Raffa K (2013) Evolution of tree killing in bark beetles (Col: Curculionidae): trade-offs between the maddening crowds and a sticky situation. Can Entomol 145:471–495

    Article  Google Scholar 

  • Lusebrink I, Erbilgin N, Evenden ML (2016) The effect of water limitation on volatile emission, tree defense response, and brood success of Dendroctonus ponderosae in two pine hosts, lodgepole, and jack pine. Front Ecol Evol 4:2. doi:10.3389/fevo.2016.00002

    Article  Google Scholar 

  • Manning CG, Reid ML (2013) Sub-lethal effects of monoterpenes on reproduction by mountain pine beetles. Agric For Entomol 15:262–271

    Article  Google Scholar 

  • Miller DR, Borden JH (1990) β-Phellandrene: kairomone for pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). J Chem Ecol 16:2519–2531

    Article  CAS  PubMed  Google Scholar 

  • Miller DR, Borden JH (2000) Dose-dependent and species-specific responses of pine bark beetles (Coleoptera: Scolytidae) to monoterpenes in association with pheromones. Can Entomol 132:183–195

    Article  Google Scholar 

  • Moreira X, Mooney KA, Rasmann S, Petry WK, Carrillo-Gavilán A, Zas R, Sampedro L (2014) Trade-offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences. Ecol Lett 17:537–546

    Article  PubMed  Google Scholar 

  • Nykänen H, Koricheva J (2004) Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104:247–268

    Article  Google Scholar 

  • Otte T, Hilker M, Geiselhardt S (2015) The effect of dietary fatty acids on the cuticular hydrocarbon phenotype of an herbivorous insect and consequences for mate recognition. J Chem Ecol 41:32–43

    Article  CAS  PubMed  Google Scholar 

  • Progar RA, Gillette N, Fettig CJ, Hrinkevich H (2014) Applied chemical ecology of the mountain pine beetle. For Sci 60:414–433

    Google Scholar 

  • Pureswaran DS, Borden JH (2005) Primary attraction and kairomonal host discrimination in three species of Dendroctonus (Coleoptera: Scolytidae). Agric For Entomol 7:219–230

    Article  Google Scholar 

  • R Core Team (2016) A language and environment for statistical computing (Vers. 3.3.1). https://www.r-project.org

  • Raffa K, Berryman A (1983a) The role of host plant resistance in the colonization behavior and ecology of bark beetles (Col: Scolytidae). Ecol Monog 53:27–49

    Article  Google Scholar 

  • Raffa K, Berryman A (1983b) Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle, Dendroctonus ponderosae (Col: Scolytidae). Can Entomol 115:723–734

    Article  Google Scholar 

  • Raffa KF, Berryman AA (1987) Interacting selective pressures in conifer-bark beetle systems: a basis for reciprocal adaptations? Am Nat 129:234–262

    Article  Google Scholar 

  • Raffa KF, Aukema BH, Erbilgin N, Klepzig KD, Wallin KF (2005) Interactions among conifer terpenoids and bark beetles across multiple levels of scale: an attempt to understand links between population patterns and physiological processes. Rec Advan Phytochem 39:79–118

    Article  CAS  Google Scholar 

  • Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG et al (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–517

    Article  Google Scholar 

  • Raffa KF, Powell EN, Townsend PA (2013) Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses. Proc Nat Acad Sci USA 110:2193–2198

    Article  CAS  PubMed  Google Scholar 

  • Raffa K, Andersson MN, Schlyter F (2016) Host selection by bark beetles: playing the odds in a high-stakes game. Advan Ins Physiol 50:1–74

    Article  Google Scholar 

  • Roden DB, Mattson WJ (2008) Rapid induced resistance and host species effects on gypsy moth, Lymantria dispar (L.): implications for outbreaks on three tree species in the boreal forest. For Ecol Manag 255:1868–1873

    Article  Google Scholar 

  • Rohde M, Waldmann R, Lunderstädt J (1996) Induced defence reaction in the phloem of spruce (Picea abies) and larch (Larix decidua) after attack by Ips typographus and Ips cembrae. For Ecol Manag 86:51–59

    Article  Google Scholar 

  • Schiebe C, Hammerbacher A, Birgersson G, Witzell J, Brodelius PE, Gershenzon J et al (2012) Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia 170:183–198

    Article  PubMed  Google Scholar 

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Ann Rev Ecol Sys 17:667–693

    Article  Google Scholar 

  • Sequeira AS, Normark BB, Farrell BD (2000) Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles. Proc Royal Soc London B 267:2359–2366

    Article  CAS  Google Scholar 

  • Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, de Renobales M (1988) Fatty acids in insects: composition, metabolism, and biological significance. Arch Ins Biochem Physiol 9:1–33

    Article  CAS  Google Scholar 

  • Sturgeon KB (1979) Monoterpene variation in ponderosa pine xylem resin related to western pine beetle predation. Evolution 33:803–814

    Article  CAS  PubMed  Google Scholar 

  • Taft S, Najar A, Erbilgin N (2015a) Pheromone production by an invasive bark beetle varies with monoterpene composition of its naïve host. J Chem Ecol 41:540–549

    Article  CAS  PubMed  Google Scholar 

  • Taft S, Najar A, Godbout J, Bousquet J, Erbilgin N (2015b) Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle. Front Plant Sci. doi:10.3389/fpls.2015.00342

    PubMed  PubMed Central  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern appied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Wallin KF, Raffa KF (2004) Feedback between individual host selection behavior and population dynamics in an eruptive herbivore. Ecol Monog 74:101–116

    Article  Google Scholar 

  • Wang Y, Lim L, Madilao L, Lah L, Bohlmann J, Breuil C (2014) Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera. Appl Environ Microbiol 80:4566–4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber H (2002) Fatty acid-derived signals in plants. Trend Plant Sci 7:217–224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by NSERC–Discovery Award to NE. Devin Letourneau from Alberta Agriculture and Forestry provided great help for site selection. Drs. Justine Karst (University of Alberta) provided valuable inputs in the earlier phases of this work. We also acknowledge that all research presented in the manuscript was conducted in accordance with all applicable laws and rules set forth by provincial (Alberta) and federal governments and the University of Alberta and all necessary permits were in hand when the research was conducted.

Author information

Authors and Affiliations

Authors

Contributions

NE, JAC, and JGK conceived and designed the experiments. NE, JAC, JGK, GI, and SZ performed the experiments. AN and AH ran chemical analysis. JAC performed statistical analysis. NE wrote the manuscript; other authors provided editorial advice.

Corresponding author

Correspondence to Nadir Erbilgin.

Additional information

Communicated by Ian Kaplan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

442_2017_3865_MOESM2_ESM.docx

Supp. Image 1. Increment cores taken from resistant lodgepole pine (Pinus contorta) trees in western Alberta (Canada) in July 2016. This particular tree is about 56–57 years old. It was attacked by the mountain pine beetle (Dendroctonus ponderosae) once in 2006/2007 period and since then tree has recovered. Since the sample was taken in July 2016, the annual growth was not complete. Supp. Image 2. Increment cores taken from residual lodgepole pine (Pinus contorta) trees in western Alberta (Canada) in July 2016. This particular tree is about 52–53 years old. It was attacked by the mountain pine beetle (Dendroctonus ponderosae) multiple times from 2006 to 2009 and since then tree has recovered. Note the annual growth rate from 2012–2015. Since the sample was taken in July 2016, the annual growth was not complete. Supp. Image 3A. Mountain pine beetle (Dendroctonus ponderosae) activities on beetle-killed lodgepole pine (Pinus contorta) trees in western Alberta (Canada). Note the extensive oviposition (vertical) and larval (perpendicular to maternal) galleries as well as staining as a result of infection by fungal associates of beetle. Supp. Image 3B. Unsuccessful gallery establishment by mountain pine beetle (Dendroctonus ponderosae) on resistant lodgepole pine (Pinus contorta) trees in western Alberta (Canada). Note the failed oviposition gallery and absence of larval galleries and fungal staining. Short oviposition galleries and dead beetle inside the gallery signify failed reproduction due to toxic terpenes. (DOCX 1141 kb)

442_2017_3865_MOESM3_ESM.docx

Supp. Map 1. Aerial overview of mountain pine beetle (Dendroctonus ponderosae) outbreak in western Alberta in 2007. Red spots show where the outbreak occurred in lodgepole pine (Pinus contorta) forests. Supp. Map 2. Location of 14 lodgepole pine (Pinus contorta) forest stands sampled in western Alberta. Supp. Map 3. Aerial overview of mountain pine beetle (Dendroctonus ponderosae) outbreak in western Alberta in 2010. Red spots show where the outbreak occurred in lodgepole pine (Pinus contorta) forests. Note that beetle outbreak moved away from our study sites after 2010. (DOCX 1304 kb)

Supplementary material 4 (DOCX 26 kb)

Supplementary material 5 (DOCX 15 kb)

Supplementary material 6 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbilgin, N., Cale, J.A., Hussain, A. et al. Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks. Oecologia 184, 469–478 (2017). https://doi.org/10.1007/s00442-017-3865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3865-9

Keywords

Navigation