Tuned in: plant roots use sound to locate water

Abstract

Because water is essential to life, organisms have evolved a wide range of strategies to cope with water limitations, including actively searching for their preferred moisture levels to avoid dehydration. Plants use moisture gradients to direct their roots through the soil once a water source is detected, but how they first detect the source is unknown. We used the model plant Pisum sativum to investigate the mechanism by which roots sense and locate water. We found that roots were able to locate a water source by sensing the vibrations generated by water moving inside pipes, even in the absence of substrate moisture. When both moisture and acoustic cues were available, roots preferentially used moisture in the soil over acoustic vibrations, suggesting that acoustic gradients enable roots to broadly detect a water source at a distance, while moisture gradients help them to reach their target more accurately. Our results also showed that the presence of noise affected the abilities of roots to perceive and respond correctly to the surrounding soundscape. These findings highlight the urgent need to better understand the ecological role of sound and the consequences of acoustic pollution for plant as well as animal populations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Appel HM, Cocroft RB (2014) Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175:1257–1266. doi:10.1007/s00442-014-2995-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Bekele T, Olsson K, Olsson U, Dahlborn K (2013) Physiological and behavioral responses to different watering intervals in lactating camels (Camelus dromedarius). Am J Physiol Regul Integr Comp Physiol 305:R639–R646

    CAS  Article  PubMed  Google Scholar 

  3. Belyavskaya NA (2001) Biological effects due to weak magnetic field on plants. Adv Space Res 34:1566–1574. doi:10.1016/j.asr.2004.01.021

    Article  Google Scholar 

  4. Bernáth B, Gál J, Horváth G (2004) Why is it worth flying at dusk for aquatic insects? Polarotactic water detection is easiest at low solar elevations. J Exp Biol 207:755–765. doi:10.1242/jeb.00810

    Article  PubMed  Google Scholar 

  5. Bielenberg DG, Miller JD, Berg VS (2003) Paraheliotropism in two Phaseolus species: combined effects of photon flux density and pulvinus temperature, and consequences for leaf gas exchange. Environ Exp Bot 49:95–105

    CAS  Article  Google Scholar 

  6. Cassab GI, Eapen D, Campos ME (2013) Root hydrotropism: an update. Am J Bot 100:14–24. doi:10.3732/ajb.1200306

    CAS  Article  PubMed  Google Scholar 

  7. Dawson TE, Ehleringer JR (1991) Streamside trees that do not use stream water. Nature 350:335–337. doi:10.1038/350335a0

    Article  Google Scholar 

  8. United States Environmental Protection Agency Office (1999) Collection systems O & M fact sheet: sewer cleaning and inspection. Publication EPA 832-F-99-031, Washington DC. http://water.epa.gov/scitech/wastetech/upload/2002_06_28_mtb_sewcl.pdf

  9. Francis CD, Barber JR (2013) A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front Ecol Environ 11:305–313

    Article  Google Scholar 

  10. Gagliano M (2013a) Green symphonies: a call for studies on acoustic communication in plants. Behav Ecol 24:789–796

    Article  PubMed  Google Scholar 

  11. Gagliano M (2013b) The flowering of plant bioacoustics: how and why. Behav Ecol 24:800–801

    Article  Google Scholar 

  12. Gagliano M, Mancuso S, Robert D (2012a) Towards understanding plant bioacoustics. Trends Plant Sci 17:323–325

    CAS  Article  PubMed  Google Scholar 

  13. Gagliano M, Renton M, Duvdevani N, Timmins M, Mancuso S (2012b) Acoustic and magnetic communication in plants: is it possible? Plant Signal Behav 7:1346–1348

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gagliano M, Renton M, Duvdevani N, Timmins M, Mancuso S (2012c) Out of sight but not out of mind: alternative means of communication in plants. PLoS One 7:e37382. doi:10.1371/journal.pone.0037382

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Galland P, Pazur A (2005) Magnetoreception in plants. J Plant Res 118:371–389. doi:10.1007/s10265-005-0246-y

    Article  PubMed  Google Scholar 

  16. Hart JW (1990) Plant tropism and growth movement. Unwin Hyman, London

    Google Scholar 

  17. Hawkins BA et al (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  18. Jaffe MJ, Takahashi H, Biro RL (1985) A pea mutant for the study of hydrotropism in roots. Science 230:445–447

    CAS  Article  PubMed  Google Scholar 

  19. Kiss JZ (2007) Where’s the water? Hydrotropism in plants. Proc Natl Acad Sci USA 104:4247–4248. doi:10.1073/pnas.0700846104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Kiss JZ, Millar KDL, Edelmann RE (2012) Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the international space station. Planta 236:635–645. doi:10.1007/s00425-012-1633-y

    CAS  Article  PubMed  Google Scholar 

  21. Ledger ME, Brown LE, Edwards KE, Milner AM, Woodward G (2013) Drought alters the structure and functioning of complex food webs. Nature Clim Change 3:223–227

    Article  Google Scholar 

  22. Maffei ME (2015) Magnetic field effects on plant growth, development, and evolution. Front Plant Sci 5:445. doi:10.3389/fpls.2014.00445

    Google Scholar 

  23. McCluney KE, Sabo JL (2009) Water availability directly determines per capita consumption at two trophic levels. Ecology 90:1463–1469

    Article  PubMed  Google Scholar 

  24. McCluney KE et al (2012) Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol Rev 87:563–582

    Article  PubMed  Google Scholar 

  25. Montgomerie R, Weatherhead PJ (1997) How robins find worms. Anim Behav 54:143–151

    CAS  Article  PubMed  Google Scholar 

  26. Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, Chicago

    Google Scholar 

  27. Östberg J, Martinsson M, Stål Ö, Fransson A-M (2012) Risk of root intrusion by tree and shrub species into sewer pipes in Swedish urban areas. Urban For Urban Green 11:65–71. doi:10.1016/j.ufug.2011.11.001

    Article  Google Scholar 

  28. Proctor MCF, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, Portland

    Google Scholar 

  29. Russell J, Vidal-Gadea AG, Makay A, Lanam C, Pierce-Shimomura JT (2014) Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans. Proc Natl Acad Sci USA 111:8269–8274. doi:10.1073/pnas.1322512111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Schaub A, Ostwald J, Siemers BM (2008) Foraging bats avoid noise. J Exp Biol 211:3174–3180. doi:10.1242/jeb.022863

    Article  PubMed  Google Scholar 

  31. Scott P (2000) Resurrection plants and the secrets of eternal leaf. Ann Bot 85:159–166

    CAS  Article  Google Scholar 

  32. Wald C (2016) The secret history of ancient toilets. Nature 533:456–458

    CAS  Article  PubMed  Google Scholar 

  33. Wolverton C, Kiss JZ (2009) An update on plant space biology. Gravit Space Res 22:13–20

    Google Scholar 

  34. Xie Q, Hodkiewicz MR, Khan N, Best A (2014) Predictive modelling of sewer blockages in vitrified clay pipes. CEED Seminar Proceedings

Download references

Acknowledgements

We thank R. Creasy, W. Piasini, H. Etchells, T. Betts, N. Clairs, R. Malkin and P. Tallai for their assistance, and H. Heilmeier and two anonymous reviewers for valuable comments on the manuscript. This work was supported by Research Fellowships from the University of Western Australia and the Australian Research Council (ARC grant n. DE130100018) to MG*.

Author information

Affiliations

Authors

Contributions

MG* conceived and designed the experiments. MG* and MG performed the experiments and collected data MG*, MD and MR analyzed and interpreted the data. MG* and MR drafted the paper. All authors edited and critically revised the final version, and approved its publication.

Corresponding author

Correspondence to Monica Gagliano.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Hermann Heilmeier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 914 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gagliano, M., Grimonprez, M., Depczynski, M. et al. Tuned in: plant roots use sound to locate water. Oecologia 184, 151–160 (2017). https://doi.org/10.1007/s00442-017-3862-z

Download citation

Keywords

  • Foraging behavior
  • Hydrotropism
  • Moisture sensing
  • Bioacoustics
  • Directional root growth