Oecologia

, Volume 183, Issue 4, pp 977–985 | Cite as

Hung out to dry? Intraspecific variation in water loss in a hibernating bat

Physiological ecology - original research

Abstract

Hibernation is a period of water deficit for some small mammals, and humidity strongly influences hibernation patterns. Dry conditions reduce length of torpor bouts, stimulate arousals, and decrease overwinter survival. To mitigate these effects, many small mammals hibernate in near saturated (100% RH) conditions. However, big brown bats (Eptesicus fuscus) hibernate in a wider variety of conditions and tolerate lower humidity than most other bats. To assess arid tolerance in this species, we compared torpid metabolic rates (TMR) and rates of total evaporative water loss (TEWL) between two populations of E. fuscus with differing winter ecologies: one that hibernates in humid karst caves and one that hibernates in relatively dry rock crevices. We used flow-through respirometry to measure TMR and TEWL of bats in humid and dry conditions. Torpid metabolic rates did not differ between populations or with humidity treatments. Rates of TEWL were similar between populations in humid conditions, but higher for cave-hibernating bats than crevice-hibernating bats in dry conditions. Our results suggest that E. fuscus hibernating in arid environments have mechanisms to decrease evaporative water loss that are not evident at more humid sites. Drought tolerance may facilitate the sedentary nature of the species, allowing them to tolerate more variable microclimates during hibernation and thus increasing the availability of overwintering habitat. The ability to survive arid conditions may also lessen the susceptibility of E. fuscus to diseases that affect water balance.

Keywords

Physiology Water loss Hibernation Metabolic rate Torpor 

References

  1. Barbour RW, Davis WH (1969) Bats of America. University Press, LexingtonGoogle Scholar
  2. Beer JR (1955) Survival and movements of banded big brown bats. J Mammal 36:242–248. doi:10.2307/1375883 CrossRefGoogle Scholar
  3. Beer JR, Richards AG (1956) Hibernation of the big brown bat. J Mammal 37:31–41. doi:10.2307/1375523 CrossRefGoogle Scholar
  4. Ben-Hamo M, Muñoz-Garcia A, Williams JB et al (2013) Waking to drink: rates of evaporative water loss determine arousal frequency in hibernating bats. J Exp Biol 216:573–577. doi:10.1242/jeb.078790 CrossRefPubMedGoogle Scholar
  5. Bisson I-A, Safi K, Holland RA (2009) Evidence for repeated independent evolution of migration in the largest family of bats. PLoS One 4:e7504. doi:10.1371/journal.pone.0007504 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boratyński JS, Willis CKR, Jefimow M, Wojciechowski MS (2015) Huddling reduces evaporative water loss in torpid Natterer’s bats, Myotis nattereri. Comp Biochem Physiol A 179:125–132. doi:10.1016/j.cbpa.2014.09.035 CrossRefGoogle Scholar
  7. Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42:1–36. doi:10.1016/S0163-7827(02)00028-0 CrossRefPubMedGoogle Scholar
  8. Bowser PA, Nugteren DH, White RJ et al (1985) Identification, isolation and characterization of epidermal lipids containing linoleic acid. BBA Lipid Lipid Met 834:419–428. doi:10.1016/0005-2760(85)90016-5 CrossRefGoogle Scholar
  9. Boyles JG, Storm JJ, Brack V (2008) Thermal benefits of clustering during hibernation: a field test of competing hypotheses on Myotis sodalis. Funct Ecol 22:632–636. doi:10.1111/j.1365-2435.2008.01423.x CrossRefGoogle Scholar
  10. Canale CI, Henry PY (2010) Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability. Clim Res 43:135–147. doi:10.3354/cr00897 CrossRefGoogle Scholar
  11. Carpenter RE (1969) Structure and function of the kidney and the water balance of desert bats. Physiol Zool 42:288–302. doi:10.2307/30155492 CrossRefGoogle Scholar
  12. Champagne AM, Muñoz-Garcia A, Shtayyeh T et al (2012) Lipid composition of the stratum corneum and cutaneous water loss in birds along an aridity gradient. J Exp Biol 215:4299–4307. doi:10.1242/jeb.077016 CrossRefPubMedGoogle Scholar
  13. Clement ME, Muñoz-Garcia A, Williams JB (2012) Cutaneous water loss and covalently bound lipids of the stratum corneum in nestling house sparrows (Passer domesticus L.) from desert and mesic habitats. J Exp Biol 215:1170–1177. doi:10.1242/jeb.064972 CrossRefPubMedGoogle Scholar
  14. Cryan PM, Meteyer CU, Blehert DS et al (2013) Electrolyte depletion in white-nose syndrome bats. J Wildl Dis 49:398–402. doi:10.7589/2012-04-121 CrossRefPubMedGoogle Scholar
  15. Cryan PM, Stricker CA, Wunder MB (2014) Continental-scale, seasonal movements of a heterothermic migratory tree bat. Ecol Appl 24:602–616. doi:10.1890/13-0752.1 CrossRefPubMedGoogle Scholar
  16. Dunbar MB, Brigham RM (2010) Thermoregulatory variation among populations of bats along a latitudinal gradient. J Comp Physiol B 180:885–893. doi:10.1007/s00360-010-0457-y CrossRefPubMedGoogle Scholar
  17. Ehlman SM, Cox JJ, Crowley PH (2013) Evaporative water loss, spatial distributions, and survival in white-nose-syndrome-affected little brown myotis: a model. J Mammal 94:572–583. doi:10.1644/12-MAMM-A-111.1 CrossRefGoogle Scholar
  18. Fisher KC, Manery JF (1967) Water and electrolyte metabolism in heterotherms. In: Fisher KC, Dawe AR, Lyman CP, Schonbaum E (eds) Mammalian hibernation. Edinburgh, Scotland, pp 235–279Google Scholar
  19. Frank CL (1992) The influence of dietary fatty acids on hibernation by golden-mantled ground squirrels (Spermophilus lateralis). Physiol Zool 65:906–920. doi:10.2307/30158549 CrossRefGoogle Scholar
  20. Frank CL, Ingala MR, Ravenelle RE et al (2016) The effects of cutaneous fatty acids on the growth of Pseudogymnoascus destructans, the etiological agent of white-nose syndrome (WNS). PLoS One 11:e0153535. doi:10.1371/journal.pone.0153535 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Geiser F (1991) The effect of unsaturated and saturated dietary lipids on the pattern of daily torpor and the fatty acid composition of tissues and membranes of the deer mouse Peromyscus maniculatus. J Comp Physiol B 161:590–597. doi:10.1007/BF00260749 CrossRefPubMedGoogle Scholar
  22. Geiser F, Broome LS (1993) The effect of temperature on the pattern of torpor in a marsupial hibernator. J Comp Physiol B 163:133–137. doi:10.1007/BF00263598 CrossRefPubMedGoogle Scholar
  23. Geiser F, Kenagy GJ (1987) Polyunsaturated lipid diet lengthens torpor and reduces body temperature in a hibernator. Am J Physiol Regul I 252:897–901Google Scholar
  24. Goehring HH (1972) Twenty-year study of Eptesicus fuscus in Minnesota. J Mammal 53:201–207. doi:10.2307/1378850 CrossRefGoogle Scholar
  25. Halsall AL, Boyles JG, Whitaker JO (2012) Body temperature patterns of big brown bats during winter in a building hibernaculum. J Mammal 93:497–503. doi:10.1111/brv.12137/full CrossRefGoogle Scholar
  26. Haugen MJ, Tieleman BI, Williams JB (2003a) Phenotypic flexibility in cutaneous water loss and lipids of the stratum corneum. J Exp Biol 206:3581–3588. doi:10.1242/jeb.00596 CrossRefPubMedGoogle Scholar
  27. Haugen MJ, Williams JB, Wertz PW, Tieleman BI (2003b) Lipids of the stratum corneum vary with cutaneous water loss among larks along a temperature-moisture gradient. Physiol Biochem Zool 76:907–917. doi:10.1086/380213 CrossRefPubMedGoogle Scholar
  28. Hays GC, Webb PI, Speakman JR (1991) Arrhythmic breathing in torpid pipistrelle bats, Pipistrellus pipistrellus. Respir Physiol 85:185–192. doi:10.1016/0034-5687(91)90060-V CrossRefPubMedGoogle Scholar
  29. Hosken DJ, Withers PC (1997) Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic and torpid. J Comp Physiol B 167:71–80. doi:10.1007/s003600050049 CrossRefPubMedGoogle Scholar
  30. Hosken DJ, Withers PC (1999) Metabolic physiology of euthermic and torpid lesser long-eared bats, Nyctophilus geoffroyi (Chiroptera: Vespertilionidae). J Mammal 80:42–52. doi:10.2307/1383206 CrossRefGoogle Scholar
  31. Humphries MM, Thomas DW, Speakman JR (2002) Climate-mediated energetic constraints on the distribution of hibernating mammals. Lett Nat 418:313–316. doi:10.1038/nature00828 CrossRefGoogle Scholar
  32. Kalcounis MC, Brigham RM (1998) Secondary use of aspen cavities by tree-roosting big brown bats. J Wildl Manag 62:603–611. doi:10.2307/3802336 CrossRefGoogle Scholar
  33. Klüg-Baerwald BJ, Gower LE, Lausen C, Brigham RM (2016) Environmental correlates and energetics of winter flight by bats in Southern Alberta. Can J Zool, Canada. doi:10.1139/cjz-2016-0055 Google Scholar
  34. Kurta A, Baker RH (1990) Eptesicus fuscus. Mammal Species 356:1–10. doi:10.2307/3504258 CrossRefGoogle Scholar
  35. Langwig KE, Frick WF, Bried JT et al (2012) Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol Lett 15:1050–1057. doi:10.1111/j.1461-0248.2012.01829.x CrossRefPubMedGoogle Scholar
  36. Lausen CL, Barclay RMR (2002) Roosting behaviour and roost selection of female big brown bats (Eptesicus fuscus) roosting in rock crevices in southeastern Alberta. Can J Zool 80:1069–1076. doi:10.1139/z02-086 CrossRefGoogle Scholar
  37. Lausen CL, Barclay RMR (2006) Winter bat activity in the Canadian prairies. Can J Zool 84:1079–1086. doi:10.1139/z06-093 CrossRefGoogle Scholar
  38. Lighton JRB (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, New YorkCrossRefGoogle Scholar
  39. Maina JN (2000) What it takes to fly: the novel respiratory structural and functional adaptations in birds and bats. J Exp Biol 203:3045–3064PubMedGoogle Scholar
  40. McNab BK (1969) The economics of temperature regulation in neutropical bats. Comp Biochem Physiol 31:227–268. doi:10.1016/0010-406X(69)91651-X CrossRefPubMedGoogle Scholar
  41. Menon GK, Cleary GW, Lane ME (2012) The structure and function of the stratum corneum. Int J Pharm 435:3–9. doi:10.1016/j.ijpharm.2012.06.005 CrossRefPubMedGoogle Scholar
  42. Mills RS, Barrett GW, Farrell MP (1975) Population dynamics of the big brown bat (Eptesicus fuscus) in southwestern Ohio. J Mammal 56:591–604. doi:10.2307/1379471 CrossRefGoogle Scholar
  43. Milsom WK, Jackson DC (2011) Hibernation and gas exchange. Comprehen Physiol 1:397–420. doi:10.1002/cphy.c090018 Google Scholar
  44. Morris S, Curtin AL, Thompson MB (1994) Heterothermy, torpor, respiratory gas exchange, water balance and the effect of feeding in Gould’s long-eared bat Nyctophilus gouldi. J Exp Biol 197:309–335PubMedGoogle Scholar
  45. Muñoz-Garcia A, Williams JB (2005) Cutaneous water loss and lipids of the stratum corneum in house sparrows Passer domesticus from arid and mesic environments. J Exp Biol 208:3689–3700. doi:10.1242/jeb.01811 CrossRefPubMedGoogle Scholar
  46. Muñoz-Garcia A, Cox RM, Williams JB (2008) Phenotypic flexibility in cutaneous water loss and lipids of the stratum corneum in house sparrows (Passer domesticus) following acclimation to high and low humidity. Physiol Biochem Zool 81:87–96. doi:10.1086/522651 CrossRefPubMedGoogle Scholar
  47. Muñoz-Garcia A, Ben-Hamo M, Pinshow B et al (2012a) The relationship between cutaneous water loss and thermoregulatory state in Kuhl’s pipistrelle Pipistrellus kuhlii, a Vespertillionid bat. Physiol Biochem Zool 85:516–525. doi:10.1086/666989 CrossRefPubMedGoogle Scholar
  48. Muñoz-Garcia A, Ro J, Reichard JD et al (2012b) Cutaneous water loss and lipids of the stratum corneum in two syntopic species of bats. Comp Biochem Physiol A 161:208–215. doi:10.1016/j.cbpa.2011.10.025 CrossRefGoogle Scholar
  49. Nelson RA (1980) Protein and fat metabolism in hibernating bears. Fed Proc 39:2955–2958PubMedGoogle Scholar
  50. Németh I, Nyitrai V, Németh A, Altbäcker V (2010) Diuretic treatment affects the length of torpor bouts in hibernating European ground squirrels (Spermophilus citellus). J Comp Physiol B 180:457–464. doi:10.1007/s00360-009-0426-5 CrossRefPubMedGoogle Scholar
  51. Norquay KJO, Martinez-Nuñez F, Dubois JE et al (2013) Long-distance movements of little brown bats (Myotis lucifugus). J Mammal 94:506–515. doi:10.1644/12-MAMM-A-065.1 CrossRefGoogle Scholar
  52. Pannkuk EL, McGuire LP, Warnecke L et al (2015) Glycerophospholipid profiles of bats with white-nose syndrome. Physiol Biochem Zool 88:425–432. doi:10.1086/681931 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Phillips GL (1966) Ecology of the big brown bat (Chiroptera: Vespertilionidae) in northeastern Kansas. Am Midl Nat 75:168–198. doi:10.2307/2423489 CrossRefGoogle Scholar
  54. Proctor JW, Studier EH (1970) Effects of ambient temperature and water vapor pressure on evaporative water loss in Myotis lucifugus. J Mammal 51:799–804. doi:10.2307/1378307 CrossRefGoogle Scholar
  55. Rainey WE, Pierson ED, Colberg M, Barclay JH (1992) Bats in hollow redwoods: seasonal use and role in nutrient transfer into old growth communities. Bat Res News 33:71Google Scholar
  56. Reimer JP, Lausen CL, Barclay RMR et al (2014) Bat activity and use of hibernacula in Wood Buffalo National Park, Alberta. Northwest Nat 95:277–288. doi:10.1898/13-30.1 CrossRefGoogle Scholar
  57. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
  58. Roverud RC, Chappell MA (1991) Energetic and thermoregulatory aspects of clustering behavior in the neotropical bat Noctilio albiventris. Physiol Zool 64:1527–1541. doi:10.2307/30158228 CrossRefGoogle Scholar
  59. Ruf T, Arnold W (2008) Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis. Am J Physiol Regul Integr 294:1044–1052. doi:10.1152/ajpregu.00688.2007 CrossRefGoogle Scholar
  60. Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev 90:891–926. doi:10.1111/brv.12137 CrossRefPubMedGoogle Scholar
  61. Schmidt-Nielsen K (1964) Desert animals: Physiological problems of heat and water. Oxford University Press, LondonGoogle Scholar
  62. Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment. Cambridge University Press, CambridgeGoogle Scholar
  63. Speakman JR, Racey PA (1989) Hibernal ecology of the pipistrelle bat: energy expenditure, water requirements and mass loss, implications for survival and the function of winter emergence flights. J Anim Ecol 58:797. doi:10.2307/5125 CrossRefGoogle Scholar
  64. Speakman JR, Thomas DW (2003) Physiological ecology and energetics of bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 430–492Google Scholar
  65. Studier EH (1970) Evaporative water loss in bats. Comp Biochem Physiol 35:935–943. doi:10.1016/0010-406X(70)90087-3 CrossRefGoogle Scholar
  66. Szewczak JM, Jackson DC (1992) Apneic oxygen uptake in the torpid bat, Eptesicus fuscus. J Exp Biol 173:217–227PubMedGoogle Scholar
  67. Thomas DW, Cloutier D (1992) Evaporative water loss by hibernating little brown bats, Myotis lucifugus. Physiol Zool 65:443–456. doi:10.2307/30158262 CrossRefGoogle Scholar
  68. Thomas DW, Geiser F (1997) Periodic arousals in hibernating mammals: is evaporative water loss involved? Funct Ecol 11:585–591. doi:10.1046/j.1365-2435.1997.00129.x CrossRefGoogle Scholar
  69. Thomas DW, Cloutier D, Gagné D (1990) Arrhythmic breathing, apnea and non-steady state oxygen uptake in hibernating little brown bats (Myotis lucifugus). J Exp Biol 149:395–406Google Scholar
  70. van Smeden J, Janssens M, Gooris GS, Bouwstra JA (2014) The important role of stratum corneum lipids for the cutaneous barrier function. BBA Mol Cell Biol L 1841:295–313. doi:10.1016/j.bbalip.2013.11.006 Google Scholar
  71. van Zyll de Jong CG (1985) Handbook of Canadian mammals. National Museums of Canada, Ottawa, ONGoogle Scholar
  72. Verant ML, Boyles JG, Waldrep W Jr et al (2012) Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS One 7:e46280. doi:10.1371/journal.pone.0046280 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Warnecke L, Turner JM, Bollinger TK et al (2013) Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biol Lett 9:20130177. doi:10.1098/rsbl.2013.0177 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Webb PI, Speakman JR, Racey PA (1995) Evaporative water loss in two sympatric species of vespertilionid bat, Plecotus auritus and Myotis daubentonii: relation to foraging mode and implications for roost site selection. J Zool 235:269–278. doi:10.1111/j.1469-7998.1995.tb05143.x CrossRefGoogle Scholar
  75. Webb PI, Speakman JR, Racey PA (1996) How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Can J Zool 74:761–765. doi:10.1139/z96-087 CrossRefGoogle Scholar
  76. Whitaker JO, Gummer SL (1992) Hibernation of the big brown bat, Eptesicus fuscus, in buildings. J Mammal 73:312–316. doi:10.2307/1382062 CrossRefGoogle Scholar
  77. Willis JS (1982) The mystery of the periodic arousal. In: Lyman CP, Willis JS, Malan A, Wang LCH (eds) Hibernation and torpor in mammals and birds. Academic Press, New York, pp 92–103Google Scholar
  78. Willis CKR, Brigham RM (2003) Defining torpor in free-ranging bats: experimental evaluation of external temperature-sensitive radiotransmitters and the concept of active temperature. J Comp Physiol B 173:379–389. doi:10.1007/s00360-003-0343-y CrossRefPubMedGoogle Scholar
  79. Willis CKR, Lane JE, Liknes ET et al (2005) Thermal energetics of female big brown bats (Eptesicus fuscus). Can J Zool 83:871–879. doi:10.1139/z05-074 CrossRefGoogle Scholar
  80. Willis CKR, Menzies AK, Boyles JG, Wojciechowski MS (2011) Evaporative water loss is a plausible explanation for mortality of bats from white-nose syndrome. Integr Comp Biol 51:1–10. doi:10.1093/icb/icr076 CrossRefGoogle Scholar
  81. Wilz M, Milsom WK, Heldmaier G (2000) Intermittent ventilation in hibernating dormice—is ventilation always necessary to meet metabolic demands? In: Heldmaier G, Klingenspor M (eds) Life in the cold. Springer, Berlin, pp 169–178CrossRefGoogle Scholar
  82. Withers PC (2001) Design, calibration and calculation for flow-through respirometry systems. Aust J Zool 49:445–461. doi:10.1071/ZO00057 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of ReginaReginaCanada

Personalised recommendations