Skip to main content

Effects of resource addition on recovery of production and plant functional composition in degraded semiarid grasslands

Abstract

Degradation of semiarid ecosystems from overgrazing threatens a variety of ecosystem services. Rainfall and nitrogen commonly co-limit production in semiarid grassland ecosystems; however, few studies have reported how interactive effects of precipitation and nitrogen addition influence the recovery of grasslands degraded by overgrazing. We conducted a 6-year experiment manipulating precipitation (natural precipitation and simulated wet year precipitation) and nitrogen (0, 25 and 50 kg N ha−1) addition at two sites with different histories of livestock grazing (moderately and heavily grazed) in Inner Mongolian steppe. Our results suggest that recovery of plant community composition and recovery of production can be decoupled. Perennial grasses provide long-term stability of high-quality forage production in this system. Supplemental water combined with exclosures led, in the heavily grazed site, to the strongest recovery of perennial grasses, although widespread irrigation of rangeland is not a feasible management strategy in many semiarid and arid regions. N fertilization combined with exclosures, but without water addition, increased dominance of unpalatable annual species, which in turn retarded growth of perennial species and increased inter-annual variation in primary production at both sites. Alleviation of grazing pressure alone allowed recovery of desired perennial species via successional processes in the heavily grazed site. Our experiments suggest that recovery of primary production and desirable community composition are not necessarily correlated. The use of N fertilization for the management of overgrazed grassland needs careful and systematic evaluation, as it has potential to impede, rather than aid, recovery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allington GRH, Valone TJ (2010) Reversal of desertification: the role of physical and chemical soil properties. J Arid Environ 74:973–977. doi:10.1016/j.jaridenv.2009.12.005

    Article  Google Scholar 

  2. Allington GRH, Valone TJ (2014) Islands of fertility: a byproduct of grazing ecosystems. Ecosystems 17:127–141. doi:10.1007/s1021-013-9711-y

    Article  Google Scholar 

  3. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261–299. doi:10.1146/annurev.energy.29.062403.102142

    Article  Google Scholar 

  4. Augustine DJ, McNaughton SJ (2006) Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9:1242–1256. doi:10.1007/s10021-005-0020-y

    CAS  Article  Google Scholar 

  5. Bai Y, Han X, Wu J, Chen Z, Li L (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184. doi:10.1038/nature02850

    CAS  Article  PubMed  Google Scholar 

  6. Bai Y, Wu J, Xing Q, Pan Q, Huang J, Yang D, Han X (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology 89:2140–2153. doi:10.1890/07-0992.1

    Article  PubMed  Google Scholar 

  7. Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning, evidence from Inner Mongolia grasslands. Glob Chang Biol 16:358–372. doi:10.1111/j.1365-2486.2009.01950.x

    Article  Google Scholar 

  8. Bolland M, Guthridge I (2007) Determining the fertiliser phosphorus requirements of intensively grazed dairy pastures in south-western Australia with or without adequate nitrogen fertiliser. Aust J Exp Agric 47:801–814. doi:10.1071/EA05184

    CAS  Article  Google Scholar 

  9. Briske DD, Fuhlendorf SD, Smeins FE (2006) A unified framework for assessment and application of ecological thresholds. Rangel Ecol Manag 59:225–236. doi:10.2111/05-115R.1

    Article  Google Scholar 

  10. Castellano MJ, Valone TJ (2007) Livestock, soil compaction and water infiltration rate: evaluating a potential desertification recovery mechanism. J Arid Environ 71:97–108. doi:10.1016/j.jaridenv.2007.03.009

    Article  Google Scholar 

  11. Chen Q, Hooper DU, Lin S (2011) Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian Steppe, China. PLoS One 6:e16909. doi:10.1371/journal.pone.0016909

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Craine JM, Morrow C, Stock WD (2008) Nutrient concentration ratios and co-limitation in South African grasslands. New Phytol 179:829–836. doi:10.1111/j.1469-8137.2008.02513.x

    CAS  Article  PubMed  Google Scholar 

  13. DeMalach N, Kigel J, Voet H, Ungar ED (2014) Are semiarid shrubs resilient to drought and grazing? Differences and similarities among species and habitats in a long-term study. J Arid Environ 102:1–8. doi:10.1016/j.jaridenv.2013.10.016

    Article  Google Scholar 

  14. DeSchrijver A, De Frenne P, Ampoorter E, Van Nevel L, Demey A, Wuyts K, Verheyen K (2011) Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob Ecol Biogeogr 20:803–816. doi:10.1111/j.1466-8238.2011.00652.x

    Article  Google Scholar 

  15. D’Odorico P, Okin GS, Bestelmeyer BT (2012) A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5:520–530. doi:10.1002/eco.259

    Article  Google Scholar 

  16. Dore MHI (2005) Climate change and changes in global precipitation patterns: What do we know? Environ Int 31:1167–1181. doi:10.1016/j.envint.2005.03.004

    Article  PubMed  Google Scholar 

  17. Evans SE, Burke IC, Lauenroth WK (2011) Controls on soil organic carbon and nitrogen in Inner Mongolia, China: A cross-continental comparison of temperate grasslands. Glob Biogeochem Cycles 25:GB3006. doi:10.1029/2010GB003945

    Article  Google Scholar 

  18. Giese M, Brueck H, Gao Y, Lin S, Steffens M, Kögel-Knabner I, Glindemann T, Susenbeth A, Taube F, Butterbach-Bahl K (2013) N balance and cycling of Inner Mongolia typical steppe, a comprehensive case study of grazing effects. Ecol Monogr 83:195–219. doi:10.1890/12-0114.1

    Article  Google Scholar 

  19. Goldstein LJ, Suding KN (2014) Intra-annual rainfall regime shifts competitive interactions between coastal sage scrub and invasive grasses. Ecology 95:425–435. doi:10.1890/12-0651.1

    Article  PubMed  Google Scholar 

  20. Gong XY, Chen Q, Dittert K, Taube F, Lin S (2012) Nitrogen, phosphorus and potassium nutritional status of semiarid steppe grassland in Inner Mongolia. Plant Soil 340:265–278. doi:10.1007/s11104-010-0577-x

    Article  Google Scholar 

  21. Gough L, Gross KL, Cleland EE, Clark CM, Collins SL, Fargione JE, Pennings SC, Suding KN (2012) Incorporating clonal growth form clarifies the role of plant height in response to nitrogen addition. Oecologia 169:1053–1062. doi:10.1007/s00442-012-2264-5

    Article  PubMed  Google Scholar 

  22. Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Chichester, Wiley

    Google Scholar 

  23. Han JG, Zhang YJ, Wang CJ, Bai WM, Wang YR, Han GD, Li LH (2008) Rangeland degradation and restoration management in China. Rangel J 30:233–239. doi:10.1071/RJ08009

    Article  Google Scholar 

  24. Heneghan L, Miller SP, Baer S, Callaham MA, Montgomery J, Pavao Zuckerman M, Rhoades CC, Richardson S (2008) Integrating soil ecological knowledge into restoration management. Restor Ecol 16:608–617. doi:10.1111/j.1526-100X.2008.00477.x

    Article  Google Scholar 

  25. Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems, responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293. doi:10.1007/BF01007582

    CAS  Google Scholar 

  26. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211. doi:10.2307/1942661

    Article  Google Scholar 

  27. Isbell F, Tilman D, Polasky S, Binder S, Hawthorne P (2013) Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol Lett 16:421–569. doi:10.1111/ele.12066

    Article  Google Scholar 

  28. Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439. doi:10.1111/j.1469-8137.2004.01201.x

    Article  Google Scholar 

  29. Kinugasa T, Tsunekawa A, Shinoda M (2012) Increasing nitrogen deposition enhances post-drought recovery of grassland productivity in the Mongolian steppe. Oecologia 170:857–865. doi:10.1007/s00442-012-2354-4

    Article  PubMed  Google Scholar 

  30. Korfanta NM, Mobley ML, Burke IC (2015) Fertilizing western rangelands for ungulate conservation: an assessment of benefits and risks. Wildl Soc Bull 39:1–8. doi:10.1002/wsb.519

    Article  Google Scholar 

  31. Ladwig LM, Collins SL, Swann AL, Xia Y, Allen MF, Allen EB (2012) Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia 169:177–185. doi:10.1007/s00442-011-2173-z

    Article  PubMed  Google Scholar 

  32. Lan Z, Bai YF (2012) Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland, critical thresholds and implications for long-term ecosystem responses. Philos Trans R Soc B Biol Sci 367:3125–3134. doi:10.1007/s00442-011-2173-z

    Article  Google Scholar 

  33. Lebauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi:10.1890/06-2057.1

    Article  PubMed  Google Scholar 

  34. Li Y, Niu S, Yu G (2016) Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Glob Chang Biol 22:934–943. doi:10.1111/gcb.13125

    Article  PubMed  Google Scholar 

  35. Lohmann D, Tietjen B, Blaum N, Joubert DF, Jeltsch F (2012) Shifting thresholds and changing degradation patterns, climate change effects on the simulated long-term response of a semi-arid savanna to grazing. J Appl Ecol 49:814–823. doi:10.1111/j.1365-2664,2012.02157.x

    Article  Google Scholar 

  36. Mekuria W (2013) Conversion of communal grazing lands into exclosures restored soil properties in the semiarid lowlands of Northern Ethiopia. Arid Land Res Manag 27:153–166. doi:10.1080/15324982.2012.721858

    Article  Google Scholar 

  37. Neff JC, Reynolds RL, Belnap J, Lamothe P (2005) Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol Appl 15:87–95. doi:10.1890/04-0268

    Article  Google Scholar 

  38. Peters DPC, Havstad KM, Archer SR, Sala OE (2015) Beyond desertification: new paradigms for dryland landscapes. Front Ecol Environ 13:4–12. doi:10.1890/140276

    Article  Google Scholar 

  39. Sasaki T, Okayasu T, Jamsran U, Takeuchi K (2008) Threshold changes in vegetation along a grazing gradient in Mongolian rangelands. J Ecol 96:145–154. doi:10.1111/j.1365-2745.2007.01315.x

    Google Scholar 

  40. Sattari SZ, Bouwman AF, Rodriguez MR, Beusen AHW, Van Ittersum MK (2016) Negative global phosphorus budgets challenge sustainable intensification of grasslands. Nat Commun 7:10696. doi:10.1038/ncomms10696

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Steffens M, Ibl AK, Totsche KU, Kögel-Knabner I (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia PR China. Geoderma 143:63–72. doi:10.1016/j.geoderma.2007.09.004

    CAS  Article  Google Scholar 

  42. Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19:46–53. doi:10.1016/j.tree.2003.10.005

    Article  PubMed  Google Scholar 

  43. Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci 102:4387–4392. doi:10.1073/pnas.0408648102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Throop HL, Reichmann LG, Sala OE, Archer SR (2012) Response of dominant grass and shrub species to water manipulation, an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland. Oecologia 169:373–383. doi:10.1007/s00442-011-2217-4

    Article  PubMed  Google Scholar 

  45. Tietjen B, Jeltsch F, Zehe E, Classen N, Groengroeft A, Schiffers K, Oldeland J (2010) Effects of climate change on the coupled dynamics of water and vegetation in drylands. Ecohydrology 3:226–237. doi:10.1002/eco.70

    Google Scholar 

  46. Tong C, Wu J, Yong S, Yang J, Yong W (2004) A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. J Arid Environ 59:133–149. doi:10.1016/j.jaridenv.2004.01.004

    Article  Google Scholar 

  47. Valone TJ, Meyer M, Brown JH, Chew RM (2002) Timescale of perennial grass recovery in desertified arid grasslands following livestock removal. Conserv Biol 16:995–1002. doi:10.1046/j.1523-1739.2002.01045.x

    Article  Google Scholar 

  48. Wang W, Liu ZL, Hao DY, Liang CZ (1996) Research on the restoring succession of the degenerated grassland in Inner Mongolia: II Analysis of the restoring processes. Acta Phytoecol Sin 20:460–471 (In Chinese with English abstract)

    Google Scholar 

  49. Wedin D, Tilman D (1993) Competition among grasses along a nitrogen gradient, initial conditions and mechanisms of competition. Ecol Monogr 63:199–229. doi:10.2307/2937180

    Article  Google Scholar 

  50. Weltzin J, Loik M, Schwinning S, Williams D, Fay P, Haddad B, Harte J, Huxman T, Knapp A, Lin G (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952. doi:10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, 31300386/41071207), the Deutsche Forschungs Gemeinschaft (DFG, project DI 546/3-2), and the Innovation Team Training plan of the Tianjin Education Committee (TD12-5037). We thank the Botany Institute for providing working facilities, Drs. Yingzhi Gao and Marc Giese for their help with field work, Dr. Holger Brueck for his constructive suggestions on experimental design, and Drs. Peter Adler, Yongfei Bai, Kimberly La Pierre, David Schimel, Chris B. Zou and two anonymous reviewers for useful comments on previous drafts of this manuscript.

Author contribution statement

SL, QC and KD designed study; QC, HL, XYG, FP and HW performed the research; QC, SL and DUH analyzed data; QC, DUH, and SL wrote the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shan Lin.

Additional information

In this paper we report results from a six year study in the Inner Mongolian steppe to evaluate whether water and nitrogen addition speeds recovery of semiarid grasslands degraded by overgrazing. We find that supplemental water resulted in strong recovery of perennial grasses, and N fertilizer addition alone increased the dominance of unpalatable annual species, decreasing the stability of production. This shows that nitrogen and water interact to control the recovery of overgrazed grassland.

Communicated by John Dwyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 252 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Hooper, D.U., Li, H. et al. Effects of resource addition on recovery of production and plant functional composition in degraded semiarid grasslands. Oecologia 184, 13–24 (2017). https://doi.org/10.1007/s00442-017-3834-3

Download citation

Keywords

  • Nitrogen
  • Overgrazing
  • Water availability
  • Plant functional group
  • Recovery