, Volume 183, Issue 4, pp 1155–1165 | Cite as

Soil microbial communities alter leaf chemistry and influence allelopathic potential among coexisting plant species

  • Scott J. MeinersEmail author
  • Kelsey K. Phipps
  • Thomas H. PendergastIV
  • Thomas Canam
  • Walter P. Carson
Community ecology – original research


While both plant–soil feedbacks and allelochemical interactions are key drivers of plant community dynamics, the potential for these two drivers to interact with each other remains largely unexplored. If soil microbes influence allelochemical production, this would represent a novel dimension of heterogeneity in plant–soil feedbacks. To explore the linkage between soil microbial communities and plant chemistry, we experimentally generated soil microbial communities and evaluated their impact on leaf chemical composition and allelopathic potential. Four native perennial old-field species (two each of Aster and Solidago) were grown in pairwise combination with each species’ soil microbial community as well as a sterilized inoculum. We demonstrated unequivocally that variation in soil microbial communities altered leaf chemical fingerprints for all focal plant species and also changed their allelopathic potential. Soil microbes reduced allelopathic potential in bioassays by increasing germination 25–54% relative to sterile control soils in all four species. Plants grown with their own microbial communities had the lowest allelopathic potential, suggesting that allelochemical production may be lessened when growing with microbes from conspecifics. The allelopathic potential of plants grown in congener and confamilial soils was indistinguishable from each other, indicating an equivalent response to all non-conspecific microbial communities within these closely related genera. Our results clearly demonstrated that soil microbial communities cause changes in leaf tissue chemistry that altered their allelopathic properties. These findings represent a new mechanism of plant–soil feedbacks that may structure perennial plant communities over very small spatial scales that must be explored in much more detail.


Allelopathy Asteraceae Conditionality Leaf chemistry Soil feedbacks 



We thank Grace S. Lloyd, Siarhei Tsymbalau and Garland P. Waleko for their assistance in the field and greenhouse, Anna J. Herzberger for assistance in the lab, and Sharon N. Dubosky for comments on the manuscript. This work was funded by the G. Murray McKinley Research Fund of the Pittsburgh Foundation, a NSF Doctoral Dissertation Improvement Grant (#0508012), and an Undergraduate Research Grant from Eastern Illinois University

Author contribution statement

TP and WC designed and conducted the initial project, KP and SM conducted the allelopathy work, TC conducted the HPLC analysis and all authors contributed to the writing and editing of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2017_3833_MOESM1_ESM.pdf (150 kb)
Supplementary material 1 (PDF 150 kb)


  1. Abhilasha D, Quintana N, Vivanco J, Joshi J (2008) Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? J Ecol 96:993–1001CrossRefGoogle Scholar
  2. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. doi: 10.1007/s00248-009-9531-y CrossRefPubMedGoogle Scholar
  3. Anacker BL, Klironomos JN, Maherali H, Reinhart KO, Strauss SY (2014) Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol Lett 17:1613–1621. doi: 10.1111/ele.12378 CrossRefPubMedGoogle Scholar
  4. Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198:264–273. doi: 10.1111/nph.12124 CrossRefPubMedGoogle Scholar
  5. Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32. doi: 10.1016/j.tplants.2003.11.008 CrossRefPubMedGoogle Scholar
  6. Banta J, Stark S, Stevens M, Pendergast T, Baumert A, Carson W (2008) Light reduction predicts widespread patterns of dominance between asters and goldenrods. Plant Ecol 199:65–76. doi: 10.1007/s11258-008-9412-3 CrossRefGoogle Scholar
  7. Barbosa P, Krischik VA, Jones CG (eds) (1991) Microbial mediation of plant-herbivore interactions. Wiley, New YorkGoogle Scholar
  8. Bennett AE, Bever JD, Deane Bowers M (2009) Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia 160:771–779. doi: 10.1007/s00442-009-1338-5 CrossRefPubMedGoogle Scholar
  9. Bennett AE, Grussu D, Kam J, Caul S, Halpin C (2015) Plant lignin content altered by soil microbial community. New Phytol 206:166–174. doi: 10.1111/nph.13171 CrossRefPubMedGoogle Scholar
  10. Bever JD (1994) Feeback between plants and their soil communities in an old field community. Ecology 75:1965–1977. doi: 10.2307/1941601 CrossRefGoogle Scholar
  11. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478. doi: 10.1016/j.tree.2010.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Biere A, Bennett AE (2013) Three-way interactions between plants, microbes and insects. Funct Ecol 27:567–573. doi: 10.1111/1365-2435.12100 CrossRefGoogle Scholar
  13. Burns JH, Anacker BL, Strauss SY, Burke DJ (2015) Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants 7. doi: 10.1093/aobpla/plv030
  14. Busby RR, Gebhart DL, Stromberger ME, Meiman PJ, Paschke MW (2011) Early seral plant species’ interactions with an arbuscular mycorrhizal fungi community are highly variable. Appl Soil Ecol 48:257–262. doi: 10.1016/j.apsoil.2011.04.014 CrossRefGoogle Scholar
  15. Butcko VM, Jensen RJ (2002) Evidence of tissue-specific allelopathic activity in Euthamia graminifolia and Solidago canadensis (Asteraceae). Am Midl Nat 148:253–262. doi:10.1674/0003-0031(2002)148[0253:eotsaa];2CrossRefGoogle Scholar
  16. Buyer JS, Roberts DP, Russek-Cohen E (2002) Soil and plant effects on microbial community structure. Can J Micro 48:955–964. doi: 10.1139/w02-095 CrossRefGoogle Scholar
  17. Chon SU, Nelson CJ (2010) Allelopathy in Compositae plants: a review. Agron Sustain Dev 30:349–358CrossRefGoogle Scholar
  18. Cipollini D, Rigsby CM, Barto EK (2012) Microbes as targets and mediators of allelopathy in plants. J Chem Ecol 38:714–727. doi: 10.1007/s10886-012-0133-7 CrossRefPubMedGoogle Scholar
  19. Filep R, Pal RW, Balázs VL et al (2016) Can seasonal dynamics of allelochemicals play a role in plant invasions? A case study with Helianthus tuberosus L. Plant Ecol 217:1489–1501. doi: 10.1007/s11258-016-0662-1 CrossRefGoogle Scholar
  20. Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Ann Rev Ecol Evol Syst 42:23–46. doi: 10.1146/annurev-ecolsys-102710-145039 CrossRefGoogle Scholar
  21. Gibson DJ (2002) Methods in comparative plant population ecology. Oxford University Press, OxfordGoogle Scholar
  22. Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M (2013) Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Funct Ecol 27:599–609. doi: 10.1111/1365-2435.12042 CrossRefGoogle Scholar
  23. Greer M, Wilson GT, Hickman K, Wilson S (2014) Experimental evidence that invasive grasses use allelopathic biochemicals as a potential mechanism for invasion: chemical warfare in nature. Plant Soil 385:165–179. doi: 10.1007/s11104-014-2209-3 CrossRefGoogle Scholar
  24. Griffin EA, Carson WP (2015) The ecology and natural history of foliar bacteria with a focus on tropical forests and agroecosystems. Bot Rev 81:105–149. doi: 10.1007/s12229-015-9151-9 CrossRefGoogle Scholar
  25. Griffin EA, Traw MB, Morin PJ, Pruitt JN, Wright SJ, Carson WP (2016) Foliar bacteria and soil fertility mediate seedling performance: a new and cryptic dimension of niche differentiation. Ecology 97:2998–3008. doi: 10.1002/ecy.1537 CrossRefPubMedGoogle Scholar
  26. Hale AN, Tonsor SJ, Kalisz S (2011) Testing the mutualism disruption hypothesis: physiological mechanisms for invasion of intact perennial plant communities. Ecosphere 2:12CrossRefGoogle Scholar
  27. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Micro Molec Biol Rev 79:293–320. doi: 10.1128/mmbr.00050-14 CrossRefGoogle Scholar
  28. Hausmann NT, Hawkes CV (2009) Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytol 183:1188–1200. doi: 10.1111/j.1469-8137.2009.02882.x CrossRefPubMedGoogle Scholar
  29. Inderjit, Dakshini KMM (1995) On laboratory bioassays in allelopathy. Bot Rev 61:28–44. doi: 10.1007/bf02897150 CrossRefGoogle Scholar
  30. Inderjit, del Moral R (1997) Is separating resource competition from allelopathy realistic? Bot Rev 63:221–230. doi: 10.2307/4354300 CrossRefGoogle Scholar
  31. Inderjit, Seastedt T, Callaway R, Pollock J, Kaur J (2008) Allelopathy and plant invasions: traditional, congeneric, and bio-geographical approaches. Bio Invas 10:875–890. doi: 10.1007/s10530-008-9239-9 CrossRefGoogle Scholar
  32. Inderjit, Wardle DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662CrossRefPubMedGoogle Scholar
  33. Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664. doi: 10.1007/s10886-012-0134-6 CrossRefPubMedGoogle Scholar
  34. Kardol P, Martijn Bezemer T, van der Putten WH (2006) Temporal variation in plant–soil feedback controls succession. Ecol Lett 9:1080–1088. doi: 10.1111/j.1461-0248.2006.00953.x CrossRefPubMedGoogle Scholar
  35. Kardol P, De Deyn GB, Laliberté E, Mariotte P, Hawkes CV (2013) Biotic plant–soil feedbacks across temporal scales. J Ecol 101:309–315. doi: 10.1111/1365-2745.12046 CrossRefGoogle Scholar
  36. Kigathi RN, Weisser WW, Veit D, Gershenzon J, Unsicker SB (2013) Plants suppress their emission of volatiles when growing with conspecifics. J Chem Ecol 39:537–545. doi: 10.1007/s10886-013-0275-2 CrossRefPubMedGoogle Scholar
  37. Kim Y, Lee E (2011) Comparison of phenolic compounds and the effects of invasive and native species in East Asia: support for the novel weapons hypothesis. Ecol Res 26:87–94. doi: 10.1007/s11284-010-0762-7 CrossRefGoogle Scholar
  38. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70CrossRefPubMedGoogle Scholar
  39. Kong CH, Hu F, Xu XH (2002) Allelopathic potential and chemical constituents of volatiles from Ageratum conyzoides under stress. J Chem Ecol 28:1173–1182. doi: 10.1023/a:1016229616845 CrossRefPubMedGoogle Scholar
  40. Kong CH, Hu F, Liang WJ, Wang PW, Jiang Y (2004) Allelopathic potential of Ageratum conyzoides at various growth stages in different habitats. Allelopath J 13:233–240Google Scholar
  41. Kos M, Tuijl MAB, de Roo J, Mulder PPJ, Bezemer TM (2015a) Plant–soil feedback effects on plant quality and performance of an aboveground herbivore interact with fertilisation. Oikos 124:658–667. doi: 10.1111/oik.01828 CrossRefGoogle Scholar
  42. Kos M, Tuijl MAB, de Roo J, Mulder PPJ, Bezemer TM (2015b) Species-specific plant–soil feedback effects on above-ground plant–insect interactions. J Ecol 103:904–914. doi: 10.1111/1365-2745.12402 CrossRefGoogle Scholar
  43. Kourtev PS, Ehrenfeld JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166CrossRefGoogle Scholar
  44. Ladwig LM, Meiners SJ, Pisula NL, Lang KA (2012) Conditional allelopathic potential of temperate lianas. Plant Ecol 213:1927–1935. doi: 10.1007/s11258-012-0087-4 CrossRefGoogle Scholar
  45. Lankau R (2010) Soil microbial communities alter allelopathic competition between Alliaria petiolata and a native species. Bio Invas 12:2059–2068. doi: 10.1007/s10530-009-9608-z CrossRefGoogle Scholar
  46. Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544. doi: 10.1111/j.1365-313X.2007.03069.x CrossRefPubMedGoogle Scholar
  47. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  48. Meiners SJ (2014) Functional correlates of allelopathic potential in a successional plant community. Plant Ecol 215:661–672. doi: 10.1007/s11258-014-0331-1 CrossRefGoogle Scholar
  49. Meiners SJ, Kong C-H, Ladwig LM, Pisula NL, Lang KA (2012) Developing an ecological context for allelopathy. Plant Ecol 213:1221–1227. doi: 10.1007/s11258-012-0078-5 CrossRefGoogle Scholar
  50. Moore JC, McCann K, Setälä H, De Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857. doi:10.1890/0012-9658(2003)084[0846:tibdpi];2CrossRefGoogle Scholar
  51. Myster RW, Pickett STA (1992) Dynamics of associations between plants in ten old fields during 31 years of succession. J Ecol 80:291–302CrossRefGoogle Scholar
  52. Pendergast TH, Burke DJ, Carson WP (2013) Belowground biotic complexity drives aboveground dynamics: a test of the soil community feedback model. New Phytol 197:1300–1310. doi: 10.1111/nph.12105 CrossRefPubMedGoogle Scholar
  53. Pisula NL, Meiners SJ (2010a) Allelopathic effects of goldenrod species on turnover in successional communities. Am Midl Nat 163:161–172CrossRefGoogle Scholar
  54. Pisula NL, Meiners SJ (2010b) Relative allelopathic potential of invasive plant species in a young disturbed woodland. J Torrey Bot Soc 137:81–87CrossRefGoogle Scholar
  55. Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291CrossRefGoogle Scholar
  56. Rice EL (1974) Allelopathy. Academic Press, New YorkGoogle Scholar
  57. Rivoal A, Fernandez C, Greff S, Montes N, Vila B (2011) Does competition stress decrease allelopathic potential? Biochem Syst Ecol 39:401–407CrossRefGoogle Scholar
  58. Roberts KJ, Anderson RC (2005) Effect of garlic mustard [Alliaria petiolata (Beib, Cavarra & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152CrossRefGoogle Scholar
  59. Schittko C, Wurst S (2014) Above- and belowground effects of plant-soil feedback from exotic Solidago canadensis on native Tanacetum vulgare. Bio Invasion 16:1465–1479. doi: 10.1007/s10530-013-0584-y CrossRefGoogle Scholar
  60. Schweiger R, Müller C (2015) Leaf metabolome in arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 26:120–126. doi: 10.1016/j.pbi.2015.06.009 CrossRefPubMedGoogle Scholar
  61. Shannon-Firestone S, Firestone J (2015) Allelopathic potential of invasive species is determined by plant and soil community context. Plant Ecol 216:491–502. doi: 10.1007/s11258-015-0453-0 CrossRefGoogle Scholar
  62. Sikes BA (2010) When do arbuscular mycorrhizal fungi protect plant roots from pathogens? Plant Signal Behav 5:763–765. doi: 10.4161/psb.5.6.11776 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14. doi: 10.1007/s00572-007-0147-0 CrossRefPubMedGoogle Scholar
  64. Thorpe AS, Thelen GC, Diaconu A, Callaway RM (2009) Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. J Ecol 97:641–645CrossRefGoogle Scholar
  65. Uesugi A, Kessler A (2013) Herbivore exclusion drives the evolution of plant competitiveness via increased allelopathy. New Phytol 198:916–924. doi: 10.1111/nph.12172 CrossRefPubMedGoogle Scholar
  66. Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi: 10.1111/j.1461-0248.2007.01139.x CrossRefPubMedGoogle Scholar
  67. van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. doi: 10.1111/1365-2745.12054 CrossRefGoogle Scholar
  68. Vannette RL, Hunter MD (2013) Mycorrhizal abundance affects the expression of plant resistance traits and herbivore performance. J Ecol 101:1019–1029. doi: 10.1111/1365-2745.12111 CrossRefGoogle Scholar
  69. Wang J, Li X, Zhang J, Yao T, Wei D, Wang Y, Wang J (2012) Effect of root exudates on beneficial microorganisms—evidence from a continuous soybean monoculture. Plant Ecol 213:1883–1892. doi: 10.1007/s11258-012-0088-3 CrossRefGoogle Scholar
  70. Wardle DA, Nilsson M-C, Gallet C, Zackrisson O (1998) An ecosystem-level perspective of allelopathy. Biol Rev 73:305–319CrossRefGoogle Scholar
  71. Weber E (1998) The dynamics of plant invasions: a case study of three exotic goldenrod species (Solidago L.) in Europe. J Biogeogr 25:147–154. doi: 10.1046/j.1365-2699.1998.251119.x CrossRefGoogle Scholar
  72. Werner PA, Gross RS, Bradbury IK (1980) The biology of Canadian weeds.: 45. Solidago canadensis L. Can J Plant Sci 60:1393–1409. doi: 10.4141/cjps80-194 CrossRefGoogle Scholar
  73. Yuan Y, Wang B, Zhang S, Tang J, Tu C, Hu S, Yong JWH, Chen X (2012) Enhanced allelopathy and competitive ability of invasive plant Solidago canadensis in its introduced range. J Plant Ecol. doi: 10.1093/jpe/rts033 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesEastern Illinois UniversityCharlestonUSA
  2. 2.School of PharmacyConcordia University WisconsinMequonUSA
  3. 3.Department of Crop and Soil ScienceUniversity of GeorgiaAthensUSA
  4. 4.Department of Biological SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations