, Volume 184, Issue 1, pp 1–12 | Cite as

Trait assembly in grasslands depends on habitat history and spatial scale

  • Liina SaarEmail author
  • Francesco de Bello
  • Meelis Pärtel
  • Aveliina Helm
Highlighted Student Research


During the past century, grasslands in Europe have undergone marked changes in land-use, leading to a decline in plant diversity both at local and regional scales, thus possibly also affecting the mechanisms of species sorting into local communities. We studied plant species assembly in grasslands with differing habitat history and hypothesised that trait divergence prevails in historical grasslands due to niche differentiation and trait convergence prevails in more dynamic grasslands due to competitive exclusion and dispersal limitation. We tested these hypotheses in 35 grassland complexes in Estonia, containing neighbouring grassland habitats with different land-use histories: continuously managed open historical grassland, currently overgrown former grassland and young developing grassland. We assessed species assembly patterns in each grassland type for finer scale—a 2 × 2 m plot scale from a local community pool and for broader scale—a local community from the habitat species pool for that grassland stage and observed changes in trait means at finer scale. We found that grasslands with long management history are assembled differently from former grasslands or young developing grasslands. In historical grasslands, divergence or random patterns prevailed at finer scale species assembly while in former or developing grasslands, mostly convergence patterns prevailed. With increasing scale convergence patterns become more prevalent in all grassland types. We conclude that land-use history is an important factor to consider when assessing grassland functional trait assembly, particularly at small scales. Understanding the mechanisms behind species assembly and their relationship with land-use history is vital for habitat conservation and restoration.


Environmental filtering Functional diversity Land-use change Limiting similarity Species pool 



We thank Prof. Jan Lepš for support in data analysis and Dr. Krista Takkis and Dr. Jonathan Bennett for helpful comments and language correction. This work was funded by the Estonian Research Council (Grant Number 9223), Estonian Ministry of Education and Research (Grant Number IUT 20-29), DoRa programme, Czech Science Foundation (Grant Number GA16-15012S) and the European Union through the European Regional Development Fund (Centre of Excellence EcolChange).

Author contribution statement

AH, FB, LS and MP designed the study. AH conducted the field sampling. LS and FB analysed the data. LS wrote the manuscript and all authors contributed substantially to revisions.

Supplementary material

442_2017_3812_MOESM1_ESM.docx (338 kb)
Supplementary material 1 (DOCX 338 kb)


  1. Aavik T, Jõgar Ü, Liira J, Tulva I, Zobel M (2008) Plant diversity in a calcareous wooded meadow—the significance of management continuity. J Veg Sci 19:475–484. doi: 10.3170/2008-8-18380 CrossRefGoogle Scholar
  2. Adler PB, Ellner SP, Levine JM (2010) Coexistence of perennial plants: an embarrassment of niches. Ecol Lett 13:1019–1029. doi: 10.1111/j.1461-0248.2010.01496.x PubMedGoogle Scholar
  3. Batalha M, Pipenbaher N, Bakan B, Kaligarič M, Škornik S (2015) Assessing community assembly along a successional gradient in the North Adriatic Karst with functional and phylogenetic distances. Oecologia 178:1205–1214. doi: 10.1007/s00442-015-3295-5 CrossRefPubMedGoogle Scholar
  4. Bennett JA, Lamb EG, Hall JC, Cardinal-McTeague WM, Cahill JF (2013) Increased competition does not lead to increased phylogenetic overdispersion in a native grassland. Ecol Lett 16:1168–1176. doi: 10.1111/ele.12153 CrossRefPubMedGoogle Scholar
  5. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366CrossRefGoogle Scholar
  6. Cornelissen J et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  7. Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471. doi:10.1890/0012-9658(2006)87[1465:attfhf];2Google Scholar
  8. de Bello F et al (2012) Functional species pool framework to test for biotic effects on community assembly. Ecology 93:2263–2273. doi: 10.1890/11-1394.1 CrossRefPubMedGoogle Scholar
  9. de Bello F et al (2013) Evidence for scale- and disturbance-dependent trait assembly patterns in dry semi-natural grasslands. J Ecol 101:1237–1244. doi: 10.1111/1365-2745.12139 CrossRefGoogle Scholar
  10. de Bello F, Carmona CP, Lepš J, Szava-Kovats R, Pärtel M (2016) Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180:933–940. doi: 10.1007/s00442-016-3546-0 CrossRefPubMedGoogle Scholar
  11. Diaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122. doi: 10.2307/3237229 CrossRefGoogle Scholar
  12. Eriksson O (1996) Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77:248–258. doi: 10.2307/3546063 CrossRefGoogle Scholar
  13. Eriksson Å, Eriksson O (1997) Seedling recruitment in semi-natural pastures: the effects of disturbance, seed size, phenology and seed bank. Nord J Bot 17:469–482. doi: 10.1111/j.1756-1051.1997.tb00344.x CrossRefGoogle Scholar
  14. Eriksson MOG, Rosén E (2008) Management of Natura 2000 habitats 2680 *Nordic alvar and precambrian calcareous flatrocks, Technical Report 2008 16/24, European CommissionGoogle Scholar
  15. Garnier E et al (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967–985. doi: 10.1093/aob/mcl215 CrossRefPubMedGoogle Scholar
  16. Gazol A et al (2012) Landscape-and small-scale determinants of grassland species diversity: direct and indirect influences. Ecography 35:944–951. doi: 10.1111/j.1600-0587.2012.07627.x CrossRefGoogle Scholar
  17. Götzenberger L et al (2012) Ecological assembly rules in plant communities—approaches, patterns and prospects. Biol Rev 87:111–127. doi: 10.1111/j.1469-185X.2011.00187.x CrossRefPubMedGoogle Scholar
  18. Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260. doi: 10.1111/j.1654-1103.2006.tb02444.x CrossRefGoogle Scholar
  19. Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77. doi: 10.1111/j.1461-0248.2005.00841.x PubMedGoogle Scholar
  20. Helm A, Oja T, Saar L, Takkis K, Talve T, Pärtel M (2009) Human influence lowers plant genetic diversity in communities with extinction debt. J Ecol 97:1329–1336. doi: 10.1111/j.1365-2745.2009.01572.x CrossRefGoogle Scholar
  21. Kasari L, Gazol A, Kalwij JM, Helm A (2013) Low shrub cover in alvar grasslands increases small-scale diversity by promoting the occurrence of generalist species. Tuexenia 33:293–308Google Scholar
  22. Kembel SW et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRefPubMedGoogle Scholar
  23. Kleyer M et al (2008) The LEDA traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274. doi: 10.1111/j.1654-1103.2003.tb02188.x CrossRefGoogle Scholar
  24. Klotz S, Kühn I, W. Durka H (2002) BIOLFLOR—Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bonn: Bundesamt für NaturschutzGoogle Scholar
  25. Krause B, Culmsee H (2013) The significance of habitat continuity and current management on the compositional and functional diversity of grasslands in the uplands of Lower Saxony, Germany. Flora 208:299–311CrossRefGoogle Scholar
  26. Laasimer L (1965) Eesti NSV Taimkate. Eesti NSV Teaduste Akadeemia Zooloogia ja Botaanika Instituut. Valgus, TallinnGoogle Scholar
  27. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. doi: 10.1890/08-2244.1 CrossRefPubMedGoogle Scholar
  28. Laliberté E, Norton DA, Scott D (2013) Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. J Veg Sci 24:834–842. doi: 10.1111/jvs.12044 CrossRefGoogle Scholar
  29. Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R Package Version 1.0-12Google Scholar
  30. Lhotsky B et al (2016) Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. J Ecol 104:507–517. doi: 10.1111/1365-2745.12532 CrossRefGoogle Scholar
  31. Lindborg R (2007) Evaluating the distribution of plant life-history traits in relation to current and historical landscape configurations. J Ecol 95:555–564. doi: 10.1111/j.1365-2745.2007.01232.x CrossRefGoogle Scholar
  32. Lindborg R et al (2012) Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography 35:356–363. doi: 10.1111/j.1600-0587.2011.07286.x CrossRefGoogle Scholar
  33. MacArthur RH, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385CrossRefGoogle Scholar
  34. Marini L et al (2012) Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Divers Distrib 18:898–908. doi: 10.1111/j.1472-4642.2012.00893.x CrossRefGoogle Scholar
  35. Marteinsdóttir B, Eriksson O (2014a) Plant community assembly in semi-natural grasslands and ex-arable fields: a trait-based approach. J Veg Sci 25:77–87. doi: 10.1111/jvs.12058 CrossRefGoogle Scholar
  36. Marteinsdóttir B, Eriksson O (2014b) Trait-based filtering from the regional species pool into local grassland communities. J Plant Ecol 7:347–355. doi: 10.1093/jpe/rtt032 CrossRefGoogle Scholar
  37. Maurer K, Durka W, Stöcklin J (2003) Frequency of plant species in remnants of calcareous grassland and their dispersal and persistence characteristics. Basic Appl Ecol 4:307–316. doi: 10.1078/1439-1791-00162 CrossRefGoogle Scholar
  38. Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093. doi: 10.1111/j.1461-0248.2010.01509.x CrossRefPubMedGoogle Scholar
  39. Mayfield M, Bonser S, Morgan J, Aubin I, McNamara S, Vesk P (2010) What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob Ecol Biogeogr 19:423–431. doi: 10.1111/j.1466-8238.2010.00532.x Google Scholar
  40. Mudrák O et al (2016) Fine-scale coexistence patterns along a productivity gradient in wet meadows: shifts from trait convergence to divergence. Ecography 39:338–348. doi: 10.1111/ecog.01723 CrossRefGoogle Scholar
  41. Neuenkamp L, Lewis RJ, Koorem K, Zobel K, Zobel M (2016) Changes in dispersal and light capturing traits explain post-abandonment community change in semi-natural grasslands. J Veg Sci 27:1222–1232. doi: 10.1111/jvs.12449 CrossRefGoogle Scholar
  42. Öster M, Ask K, Cousins SA, Eriksson O (2009) Dispersal and establishment limitation reduces the potential for successful restoration of semi-natural grassland communities on former arable fields. J Appl Ecol 46:1266–1274. doi: 10.1111/j.1365-2664.2009.01721.x Google Scholar
  43. Pärtel M, Helm A (2007) Invasion of woody species into temperate grasslands: relationship with abiotic and biotic soil resource heterogeneity. J Veg Sci 18:63–70. doi: 10.1111/j.1654-1103.2007.tb02516.x CrossRefGoogle Scholar
  44. Pärtel M, Mändla R, Zobel M (1999) Landscape history of a calcareous (alvar) grassland in Hanila, western Estonia, during the last three hundred years. Landsc Ecol 14:187–196. doi: 10.1023/a:1008040114832 CrossRefGoogle Scholar
  45. Purschke O, Sykes MT, Reitalu T, Poschlod P, Prentice HC (2012) Linking landscape history and dispersal traits in grassland plant communities. Oecologia 168:773–783. doi: 10.1007/s00442-011-2142-6 CrossRefPubMedGoogle Scholar
  46. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Accessed 18 Jan 2015
  47. Reitalu T et al (2014) Determinants of fine-scale plant diversity in dry calcareous grasslands within the Baltic Sea region. Agric Ecosyst Environ 182:59–68. doi: 10.1016/j.agee.2012.11.005 CrossRefGoogle Scholar
  48. Riibak K et al (2015) Dark diversity in dry calcareous grasslands is determined by dispersal ability and stress-tolerance. Ecography 38:713–721. doi: 10.1111/ecog.01312 CrossRefGoogle Scholar
  49. Royal Botanic Gardens Kew (2015) Seed Information Database (SID). Version 7.1. Accessed 14 Mar 2015
  50. Saar L, Takkis K, Pärtel M, Helm A (2012) Which plant traits predict species loss in calcareous grasslands with extinction debt? Divers Distrib 18:808–817. doi: 10.1111/j.1472-4642.2012.00885.x CrossRefGoogle Scholar
  51. Schleuning M, Niggemann M, Becker U, Matthies D (2009) Negative effects of habitat degradation and fragmentation on the declining grassland plant Trifolium montanum. Basic Appl Ecol 10:61–69CrossRefGoogle Scholar
  52. Stubbs WJ, Wilson BJ (2004) Evidence for limiting similarity in a sand dune community. J Ecol 92:557–567. doi: 10.1111/j.0022-0477.2004.00898.x CrossRefGoogle Scholar
  53. Thompson K, Hillier SH, Grime JP, Bossard CC, Band SR (1996) A functional analysis of a limestone grassland community. J Veg Sci 7:371–380. doi: 10.2307/3236280 CrossRefGoogle Scholar
  54. Thompson K, Petchey OL, Askew AP, Dunnett NP, Beckerman AP, Willis AJ (2010) Little evidence for limiting similarity in a long-term study of a roadside plant community. J Ecol 98:480–487. doi: 10.1111/j.1365-2745.2009.01610.x CrossRefGoogle Scholar
  55. Török P, Helm A (2017) Ecological theory provides strong support for habitat restoration. Biol Conserv 206:85–91. doi: 10.1016/j.biocon.2016.12.024 CrossRefGoogle Scholar
  56. Tremlová K, Münzbergová Z (2007) Importance of species traits for species distribution in fragmented landscapes. Ecology 88:956–977. doi: 10.1890/06-0924 CrossRefGoogle Scholar
  57. Vandewalle M et al (2014) Functional responses of plant communities to management, landscape and historical factors in semi-natural grasslands. J Veg Sci 25:750–759. doi: 10.1111/jvs.12126 CrossRefGoogle Scholar
  58. Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206. doi: 10.1086/652373 CrossRefPubMedGoogle Scholar
  59. Weiher E, Keddy PA (1995) The assembly of experimental wetland plant communities. Oikos 73:323–335. doi: 10.2307/3545956 CrossRefGoogle Scholar
  60. Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620. doi: 10.2307/3237076 CrossRefGoogle Scholar
  61. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. doi: 10.1023/A:1004327224729 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Liina Saar
    • 1
    Email author
  • Francesco de Bello
    • 2
    • 3
  • Meelis Pärtel
    • 1
  • Aveliina Helm
    • 1
  1. 1.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  2. 2.Institute of BotanyCzech Academy of SciencesTřeboňCzech Republic
  3. 3.Department of BotanyUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations