Advertisement

Oecologia

, Volume 183, Issue 3, pp 667–676 | Cite as

Clouds homogenize shoot temperatures, transpiration, and photosynthesis within crowns of Abies fraseri (Pursh.) Poiret

  • J. Melissa Hernandez-Moreno
  • Nicole M. Bayeur
  • Harold D. ColeyIV
  • Nicole M. HughesEmail author
Physiological ecology - original research

Abstract

Multiple studies have examined the effects of clouds on shoot and canopy-level microclimate and physiological processes; none have yet done so on the scale of individual plant crowns. We compared incident photosynthetically active radiation (PAR), leaf temperatures, chlorophyll fluorescence, and photosynthetic gas exchange of shoots in three different spatial locations of Abies fraseri crowns on sunny (clear to partly cloudy) versus overcast days. The field site was a Fraser fir farm (1038 m elevation) in the Appalachian mountains, USA. Ten saplings of the same age class were marked and revisited for all measurements. Sunny conditions corresponded with 5–10× greater sunlight incidence on south-facing outer shoots compared to south-facing inner and north-facing outer shoots, which were shaded and received only indirect (diffuse) sunlight. Differences in spatial distribution of irradiance were mirrored in differences in shoot temperatures, photosynthesis, and transpiration, which were all greater in south-facing outer shoots compared to more shaded crown locations. In contrast, overcast conditions corresponded with more homogeneous sunlight distribution between north and south-facing outer shoots, and similar shoot temperatures, chlorophyll fluorescence (ΦPSII), photosynthesis, and transpiration; these effects were observed in south-facing inner shoots as well, but to a lesser extent. There was no significant difference in conductance between different crown locations on sunny or overcast days, indicating spatial differences in transpiration under sunny conditions were likely driven by leaf temperature differences. We conclude that clouds can affect spatial distribution of sunlight and associated physiological parameters not only within forest communities, but within individual crowns as well.

Keywords

Carbon gain Climate change Diffuse light Photoinhibition Treeline 

Notes

Acknowledgements

This research was supported by the National Science Foundation (IOS Grant No. 1122064). We also thank Mr. Thad Taylor for allowing us to work in his tree farm, and Dr. Howard Neufeld for providing weather station data and assistance locating a field site.

Author contributions statement

NMH conceived and designed the experiments. JMH, HDC, NMB, and NMH performed experiments. JMH and NMH analyzed data and wrote manuscript. HDC and NMB provided editorial advice on the manuscript.

Supplementary material

442_2016_3799_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1137 kb)

References

  1. Alton PB (2008) Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies. Agric For Meteorol 148:1641–1653. doi: 10.1016/j.agrformet.2008.05.014 CrossRefGoogle Scholar
  2. Alton PB, North PR, Los SO (2007) The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Glob Chang Biol 13:776–787. doi: 10.1111/j.1365-2486.2007.01316.x CrossRefGoogle Scholar
  3. Berry ZC, Smith WK (2012) Cloud pattern and water relations in Picea rubens and Abies fraseri, southern Appalachian Mountains. USA Agric For Meteorol 162–163:27–34. doi: 10.1016/j.agrformet.2012.04.005 CrossRefGoogle Scholar
  4. Berry ZC, Hughes NM, Smith WK (2014) Cloud immersion: an important water source for spruce and fir saplings in southern Appalachian Mountains. Oecologia 174:319–326. doi: 10.1007/s00442-013-2770-0 CrossRefPubMedGoogle Scholar
  5. Cogbill CV, White PS (1991) The latitude-elevation relationship for spruce-fir forest and treeline along the Appalachian mountain chain. Vegetatio 94:153–175. doi: 10.1007/BF00032629 CrossRefGoogle Scholar
  6. Cohen S, Mosoni P, Meron M (1995) Canopy clumpiness and radiation penetration in a young hedgerow apple orchard. Agric For Meteorol 76:185–200. doi: 10.1016/0168-1923(95)02226-N CrossRefGoogle Scholar
  7. Dengel S, Grace J (2010) Carbon dioxide exchange and canopy conductance of two coniferous forests under various sky conditions. Oecologia 164:797–808. doi: 10.1007/s00442-010-1687-0 CrossRefPubMedGoogle Scholar
  8. Duchesneau R, Lesage I, Messier C, Morin H (2001) Effects of light and intraspecific competition on growth and crown morphology of two size classes of understory balsam fir saplings. Forest Ecol Manag 140:215–225. doi: 10.1016/S0378-1127(00)00281-4 CrossRefGoogle Scholar
  9. Duchon CE, O’Malley MS (1999) Estimating cloud type from pyranometer observations. J Appl Meteorol 38:132–141. doi: 10.1175/1520-0450(1999)038<0132:ECTFPO>2.0.CO;2 CrossRefGoogle Scholar
  10. Germino MJ, Smith WK, Resor AC (2002) Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol 162:157–168. doi: 10.1023/A:1020385320738 CrossRefGoogle Scholar
  11. Gu L, Fuentes JD, Shugart HH, Staebler RM, Black TA (1999) Response of net ecosystem exchanges of carbon dioxide to changes in cloudiness: results from two North American deciduous forest. J Geophys Res 104:31421–31434. doi: 10.1029/1999JD901068 CrossRefGoogle Scholar
  12. Gu L, Baldocchi D, Shashi BV, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107:1–23. doi: 10.1029/2001JD001242 Google Scholar
  13. Gu L, Baldocchi D, Wofsy S, Munger J, Michalsky J, Urbanski S, Boden T (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299:2035–2038. doi: 10.1126/science.1078366 CrossRefPubMedGoogle Scholar
  14. Hinesley LE, Derby SA (2004) Growth of fraser fir christmas trees in response to annual shearing. HortScience 39:1644–1646Google Scholar
  15. Hughes NM, Carpenter KL, Cook DK, Keidel TS, Miller CN, Neal JL, Sanchez A, Smith WK (2015) Effects of cumulus clouds on microclimate and shoot-level photosynthetic gas exchange in Picea englemanii and Abies lasiocarpa at treeline, Medicine Bow Mountains, Wyoming, USA. Agric For Meteorol 201:26–37. doi: 10.1016/j.agrformet.2014.10.012 CrossRefGoogle Scholar
  16. IPCC (2007) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) Solomon S. Cambridge University Press, CambridgeGoogle Scholar
  17. Johnson DM, Smith WK (2006) Low clouds and cloud immersion enhance photosynthesis in understory species of southern Appalachian spruce-fir forest (USA). Am J Bot 93:1625–1632. doi: 10.3732/ajb.93.11.1625 CrossRefPubMedGoogle Scholar
  18. Johnson DM, Smith WK (2008) Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in southern Appalachian Mountains, USA. Tree Physiol 28:385–392. doi: 10.1093/treephys/28.3.385 CrossRefPubMedGoogle Scholar
  19. Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli K, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw KT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2002) Environmental control over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol 113:97–120. doi: 10.1016/S0168-1923(02)00104-1 CrossRefGoogle Scholar
  20. Letts M, Lafleur P, Roulet N (2005) On the relationship between cloudiness and net ecosystem carbon dioxide exchange in a peatland ecosystem. Ecoscience 12:53–59. doi: 10.2980/i1195-6860-12-1-53.1 CrossRefGoogle Scholar
  21. Mulkey SS, Kitajima K, Wright SJ (1996) Plant physiological ecology of tropical forest canopies. Trends Ecol Evol 11:408–412. doi: 10.1016/0169-5347(96)10043-4 CrossRefPubMedGoogle Scholar
  22. Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566. doi: 10.1104/pp.125.4.1558 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Niyogi D, Chang H, Saxena VK, Holt T, Alapaty K, Booker F, Chen F, Davis KJ, Holben B, Matsui T, Meyers T, Oechel WC, Pielke RA Sr, Wells R, Wilson K, Xue Y (2004) Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophys Res Lett 31:L20506. doi: 10.1029/2004GL020915 CrossRefGoogle Scholar
  24. Norris JR, Allen RJ, Evan AT, Zelinka MD, O’Dell CW, Klein SA (2016) Evidence for climate change in the satellite cloud record. Nature. doi: 10.1038/nature18273 (in press) Google Scholar
  25. Pounds JA, Fogden MLP, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615. doi: 10.1038/19297 CrossRefGoogle Scholar
  26. Reinhardt KS, Smith WK (2008) Impacts of cloud immersion on microclimate, photosynthesis and water retention of Abies fraseri (Pursh.) Poiret in temperate mountain cloud forest. Oecologia 158:229–238. doi: 10.1007/s00442-008-1128-5 CrossRefPubMedGoogle Scholar
  27. Reinhardt KS, Smith WK (2016) Chlorophyll fluorescence and photosynthetic gas exchange under direct versus diffuse light in evergreen conifer (Picea pungens) shoots and broadleaf shrub (Rhododendron ponticum) leaves. Plant Ecol. doi: 10.1007/s11258-016-0586-9 Google Scholar
  28. Richardson AD, Denny EG, Siccama TG, Lee X (2003) Evidence for a rising cloud ceiling in eastern North America. J Climate 16:2093–2098. doi: 10.1175/1520-0442(2003)016<2093:EFARCC>2.0.CO;2 CrossRefGoogle Scholar
  29. Rocha AV, Hong-Bing S, Vogel CS, Schmid HP, Curtis PS (2004) Photosynthetic and water use efficiency responses to diffuse radiation by an aspen-dominated northern hardwood forest. For Sci 50:793–801Google Scholar
  30. Rochette P, Desjardins RL, Pattey E, Lessard R (1996) Instantaneous measurement of radiation and water use efficiencies of a maize crop. Agron J 88:627–635. doi: 10.2134/agronj1996.00021962008800040022x CrossRefGoogle Scholar
  31. Roderick M, Farquhar G, Berry S, Noble I (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30. doi: 10.1007/s004420100760 CrossRefGoogle Scholar
  32. Sanchez A, Hughes NM, Smith WK (2016) Leaf/shoot level ecophysiology in two broadleaf and two needle-leaf species under representative cloud regimes at alpine treeline. J Plant Ecol. doi: 10.1093/jpe/rtw019 (in press) Google Scholar
  33. Smart Richard E (1988) Shoot spacing and canopy light microclimate. Am J Enol Vitic 39:325–333Google Scholar
  34. Smith WK, Hughes NM (2009) Progress in coupling plant form and photosynthetic function. Castanea 74:1–26. doi: 10.2179/08-009R5.1 CrossRefGoogle Scholar
  35. Stenberg P, Kuuluvainen T, Kellomäki S, Grace JC, Jokela EJ, Gholz HL (1994) Crown structure, light interception and productivity of pine trees and stands. Ecol Bull 43:20–34Google Scholar
  36. Urban O, Janous D, Acosta M, Czerny R, Markova I, Navratil M, Pavelka M, Pokorny R, Sprtova M, Zhang R, Spunda V, Grace J, Marek MV (2007) Ecophysiological controls over net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Glob Chang Biol 13:157–168. doi: 10.1111/j.1365-2486.2006.01265.x CrossRefGoogle Scholar
  37. Weathers KC (1999) The importance of cloud and fog in the maintenance of ecosystems. Trends Ecol Evol 14:214–215. doi: 10.1016/S0169-5347(99)01635-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • J. Melissa Hernandez-Moreno
    • 1
  • Nicole M. Bayeur
    • 1
  • Harold D. ColeyIV
    • 1
  • Nicole M. Hughes
    • 1
    Email author
  1. 1.Department of BiologyHigh Point UniversityHigh PointUSA

Personalised recommendations