Skip to main content
Log in

Making sense of metacommunities: dispelling the mythology of a metacommunity typology

  • Concepts, Reviews and Syntheses
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Metacommunity ecology has rapidly become a dominant framework through which ecologists understand the natural world. Unfortunately, persistent misunderstandings regarding metacommunity theory and the methods for evaluating hypotheses based on the theory are common in the ecological literature. Since its beginnings, four major paradigms—species sorting, mass effects, neutrality, and patch dynamics—have been associated with metacommunity ecology. The Big 4 have been misconstrued to represent the complete set of metacommunity dynamics. As a result, many investigators attempt to evaluate community assembly processes as strictly belonging to one of the Big 4 types, rather than embracing the full scope of metacommunity theory. The Big 4 were never intended to represent the entire spectrum of metacommunity dynamics and were rather examples of historical paradigms that fit within the new framework. We argue that perpetuation of the Big 4 typology hurts community ecology and we encourage researchers to embrace the full inference space of metacommunity theory. A related, but distinct issue is that the technique of variation partitioning is often used to evaluate the dynamics of metacommunities. This methodology has produced its own set of misunderstandings, some of which are directly a product of the Big 4 typology and others which are simply the product of poor study design or statistical artefacts. However, variation partitioning is a potentially powerful technique when used appropriately and we identify several strategies for successful utilization of variation partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becking B (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon (in Dutch), The Hague

    Google Scholar 

  • Bell G (2001) Neutral macroecology. Science 293:2413–2418

    Article  CAS  PubMed  Google Scholar 

  • Biswas SR, Mallik AU, Braithwaite NT, Wagner HH (2016) A conceptual framework for the 480 spatial analysis of functional trait diversity. Oikos 125:192–200. doi:10.1111/oik.02277

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. doi:10.1890/07-0986.1

    Article  PubMed  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological 484 variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of 488 immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Brown JH et al (2011) Energetic limits to economic growth. Bioscience 61:19–26. doi:10.1525/bio.2011.61.1.7

    Article  Google Scholar 

  • Canedo-Arguelles M et al (2015) Dispersal strength determines meta-community structure in a dendritic riverine network. J Biogeogr 42:778–790

    Article  Google Scholar 

  • Chase JM (2005) Towards a really unified theory for metacommunities. Funct Ecol 19:182–186

    Article  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical transactions of the Royal Soc of London B: Biological Sci 366:2351–2363. doi:10.1098/rstb.2011.0063

    Article  Google Scholar 

  • Chase JM et al (2005) Competing theories for competitive metacommunities. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities, 1st edn. University of Chicago Press, Chicago, pp 335–354

    Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182. doi:10.1111/j.1461-0248.2005.00820.x

    Article  PubMed  Google Scholar 

  • Datry T, Bonada N, Heino J (2016) Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos 125:149–159. doi:10.1111/oik.02922

    Article  Google Scholar 

  • De Bie T et al (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747. doi:10.1111/j.1461-0248.2012.01794.x

    Article  PubMed  Google Scholar 

  • Diniz-Filho JAF, Siqueira T, Padial AA, Rangel TF, Landeiro VL, Bini LM (2012) Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121:201–210. doi:10.1111/j.1600-0706.2011.19563.x

    Article  Google Scholar 

  • Dray S et al (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275. doi:10.1890/11-1183.1

    Article  Google Scholar 

  • Duivenvoorden JF, Svenning JC, Wright SJ (2002) Beta Diversity in Tropical Forests. Science 295:636–637. doi:10.1126/science.295.5555.636

    Article  CAS  PubMed  Google Scholar 

  • Fernandes IM, Henriques-Silva R, Penha J, Zuanon J, Peres-Neto PR (2014) Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37:464–475. doi:10.1111/j.1600-0587.2013.00527.x

    Google Scholar 

  • Gilbert B, Bennett JR (2010) Partitioning variation in ecological communities: do the numbers add up? J Appl Ecol 47:1071–1082. doi:10.1111/j.1365-2664.2010.01861.x

    Article  Google Scholar 

  • Gil-Tena A, Lecerf R, Ernoult A (2013) Disentangling community assemblages to depict an indicator of biological connectivity: A regional study of fragmented semi-natural grasslands. Ecol Ind 24:48–55. doi:10.1016/j.ecolind.2012.05.022

    Article  Google Scholar 

  • Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. J Veg Sci 17:255–260. doi:10.1111/j.1654-1103.2006.tb02444.x

    Article  Google Scholar 

  • Holyoak M, Leibold MA, Holt RD (eds) (2005) Metacommunities: spatial dynamics and ecological communities, 1st edn. University of Chicago Press, Chicago

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hubert N, Calcagno V, Etienne RS, Mouquet N (2015) Metacommunity speciation models and their implications for diversification theory. Ecol Lett 18:864–881. doi:10.1111/ele.12458

    Article  PubMed  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or Why are there so many kinds of animals? Am Nat 63:145–159

    Article  Google Scholar 

  • Jabot F, Lohier T (2016) Non-random correlation of species dynamics in tropical tree communities. Oikos. doi:10.1111/oik.03103

    Google Scholar 

  • Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192. doi:10.2307/3546712

    Article  Google Scholar 

  • Legendre P, Gauthier O (2014) Statistical methods for temporal and space–time analysis of community composition data. Proc R Soc B Biol Sci 281. doi:10.1098/rspb.2013.2728

  • Legendre P et al (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier

  • Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450

    Article  Google Scholar 

  • Legendre P, Borcard D, Peres-Neto PR (2008) Analyzing or explaining beta diversity? comment. Ecology 89:3238–3244

    Article  Google Scholar 

  • Legendre P, Borcard D, Roberts DW (2012) Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93:1234–1240. doi:10.1890/11-2028.1

    Article  PubMed  Google Scholar 

  • Legendre P, Fortin M-J (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Res 10:831–844. doi:10.1111/j.1755-0998.2010.02866.x

    Article  Google Scholar 

  • Leibold MA et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Levin SA (1974) Dispersion and population interactions. Am Nat 108:207–228

    Article  Google Scholar 

  • Levins R, Culver D (1971) Regional coexistence of species and competition between rare species. Proc Natl Acad Sci 68:1246–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491. doi:10.1016/j.tree.2011.04.009

    Article  PubMed  Google Scholar 

  • Meier S, Soininen J (2014) Phytoplankton metacommunity structure in subarctic rock pools. Aquat Microb Ecol 73:81–91. doi:10.3354/ame01711

    Article  Google Scholar 

  • Meynard CN et al (2013) Disentangling the drivers of metacommunity structure across spatial scales. J Biogeogr 40:1560–1571. doi:10.1111/jbi.12116

    Article  PubMed  PubMed Central  Google Scholar 

  • Mouquet N, Loreau M (2003) Community Patterns in Source-Sink Metacommunities. Am Natur 162:544–557. doi:10.1086/378857

    Article  PubMed  Google Scholar 

  • Moritz C et al (2013) Disentangling the role of connectivity, environmental filtering, and spatial structure on metacommunity dynamics. Oikos 122:1401–1410. doi:10.1111/j.1600-0706.2013.00377.x

    Google Scholar 

  • Münkemüller T et al (2012) From diversity indices to community assembly processes: a test with simulated data. Ecography 35:468–480. doi:10.1111/j.1600-0587.2011.07259.x

    Article  Google Scholar 

  • Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878

    Article  Google Scholar 

  • O’Donohue W, Buchanan JA (2001) The weakness of strong inference. Behav Philos 29:1–20

    Google Scholar 

  • Padial AA et al (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS One 9:e111227. doi:10.1371/journal.pone.0111227

    Article  PubMed  PubMed Central  Google Scholar 

  • Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Glob Ecol Biogeogr 19:174–184. doi:10.1111/j.1466-8238.2009.00506.x

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices-estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Platt JR (1964) Strong Inference Certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 146:347–353. doi:10.1126/science.146.3642.347

    Article  CAS  PubMed  Google Scholar 

  • Rádková V, Bojková J, Křoupalová V, Schenková J, Syrovátka V, Horsák M (2014) The role of dispersal mode and habitat specialisation in metacommunity structuring of aquatic macroinvertebrates in isolated spring fens. Freshw Biol 59:2256–2267. doi:10.1111/fwb.12428

    Article  Google Scholar 

  • Ricotta C, Moretti M (2010) Assessing the functional turnover of species assemblages with tailored dissimilarity matrices. Oikos 119:1089–1098

    Article  Google Scholar 

  • Seymour M, Fronhofer EA, Altermatt F (2015) Dendritic network structure and dispersal affect temporal dynamics of diversity and species persistence. Oikos 124:908–916. doi:10.1111/oik.02354

    Article  Google Scholar 

  • Shipley B (2002) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge

    Google Scholar 

  • Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12:1–20. doi:10.2307/2845026

    Article  Google Scholar 

  • Simberloff DS, Boecklen WJ (1981) Santa Rosalia reconsidered: Size ratios and competition. Evolution 35:1206–1228

    Article  Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218. doi:10.1007/BF02464427

    Article  CAS  PubMed  Google Scholar 

  • Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33:648–655. doi:10.1111/j.1600-0587.2009.06105.x

    Article  Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the mantel test of matrix correspondence. Syst Zool 35:627–632. doi:10.2307/2413122

    Article  Google Scholar 

  • Soininen J (2012) Macroecology of unicellular organisms–patterns and processes. Environmental Microbiology Reports 4:10–22. doi:10.1111/j.1758-2229.2011.00308.x

    Article  PubMed  Google Scholar 

  • Soininen J (2016) Spatial structure in ecological communities–a quantitative analysis. Oikos 125:160–166. doi:10.1111/oik.02241

    Article  Google Scholar 

  • Sokol ER, Benfield EF, Belden LK, Valett HM (2011) The assembly of ecological communities inferred from taxonomic and functional composition. Am Nat 177:630–644

    Article  PubMed  Google Scholar 

  • Sokol ER, Herbold CW, Lee CK et al (2013) Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere 4:art136. doi:10.1890/ES13-00136.1

  • Sokol ER, Hoch JM, Gaiser E, Trexler JC (2014) Metacommunity structure along resource and disturbance gradients in Everglades wetlands. Wetlands 34:135–146

    Article  Google Scholar 

  • Sokol ER, Brown BL, Carey CC, Tornwall B, Swan CM, Barrett JE (2015) Linking management to biodiversity in built ponds using metacommunity simulations. Ecol Model 296:36–45

    Article  Google Scholar 

  • Sokol ER, Brown BL, Barrett JE (2016) A simulation-based approach to understand how metacommunity characteristics influence emergent biodiversity patterns. Oikos . doi:10.1111/oik.03690

    Google Scholar 

  • Sokol ER, Brown BL, Barrett JE (In Review) A simulation-based approach to understand how metacommunity characteristics influence emergent biodiversity patterns. Methods Ecol Evol

  • Stegen JC, Hurlbert AH (2011) Inferring ecological processes from taxonomic, phylogenetic and functional trait beta-diversity. PLoS One 6:13. doi:10.1371/journal.pone.0020906

    Article  Google Scholar 

  • Steinbauer MJ, Dolos K, Reineking B, Beierkuhnlein C (2012) Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Glob Ecol Biogeogr 21:1203–1212. doi:10.1111/j.1466-8238.2012.00772.x

    Article  Google Scholar 

  • Szekely AJ, Langenheder S (2014) The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol Ecol 87:102–112. doi:10.1111/1574-6941.12195

    Article  CAS  PubMed  Google Scholar 

  • Thompson RM, Townsend CR (2006) A truce with neutral theory: Local deterministic factors, species traits and dispersal limitation determine patterns of diversity in stream invertebrates. J Anim Ecol 75:476–484

    Article  PubMed  Google Scholar 

  • Tuomisto H (2012) An updated consumer’s guide to evenness and related indices. Oikos 121:1203–1218. doi:10.1111/j.1600-0706.2011.19897.x

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K (2006) Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology 87:2697–2708

    Article  PubMed  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western amazonian forests. Science 299:241–244

    Article  CAS  PubMed  Google Scholar 

  • Tuomisto H, Ruokolainen K (2008) Analyzing or Explaining Beta Diversity? Reply. Ecology 89:3244–3256. doi:10.1890/08-1247.1

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen L, Ruokolainen K (2012) Modelling niche and neutral dynamics: on the ecological interpretation of variation partitioning results. Ecography 35:961–971. doi:10.1111/j.1600-0587.2012.07339.x

    Article  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Whittaker RH (1962) Classification of natural communities. Bot Rev 28:1–239. doi:10.2307/4353649

    Article  Google Scholar 

  • Winegardner AK, Jones BK, Ng ISY, Siqueira T, Cottenie K (2012) The terminology of metacommunity ecology. Trends Ecol Evol 27:253–254. doi:10.1016/j.tree.2012.01.007

    Article  PubMed  Google Scholar 

  • Zhang Y, Zhang J, Wang L, Lu D, Cai D, Wang B (2014) Influences of dispersal and local environmental factors on stream macroinvertebrate communities in Qinjiang River, Guangxi, China. Aquatic Biol 20:185–194. doi:10.3354/ab00560

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to my postdoc mentor Mathew Leibold and fellow postdoc Nicolas Loeuille for planting the metacommunity bug in my ear, even though I was supposed to be working on compensatory dynamics at the time. We are also grateful to Mathew Leibold and Pedro Peres-Neto who commented on earlier versions of this manuscript. We acknowledge support from the National Science Foundation Grants DEB-1202932 to BLB and DEB-1406770 to BLB and JS.

Author contribution statement

This manuscript emerged from discussions conducted during meetings of the Brown Lab in the Department of Biological Sciences at Virginia Tech during which all authors were present. All authors contributed significantly to the concept, development and writing of the present manuscript. BLB and ERS were responsible for final construction and editing of the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan L. Brown.

Additional information

Communicated by Joel Trexler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, B.L., Sokol, E.R., Skelton, J. et al. Making sense of metacommunities: dispelling the mythology of a metacommunity typology. Oecologia 183, 643–652 (2017). https://doi.org/10.1007/s00442-016-3792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3792-1

Keywords

Navigation