Skip to main content

Advertisement

Log in

Ocean acidification alters temperature and salinity preferences in larval fish

  • Global change ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Ocean acidification alters the way in which animals perceive and respond to their world by affecting a variety of senses such as audition, olfaction, vision and pH sensing. Marine species rely on other senses as well, but we know little of how these might be affected by ocean acidification. We tested whether ocean acidification can alter the preference for physicochemical cues used for dispersal between ocean and estuarine environments. We experimentally assessed the behavioural response of a larval fish (Lates calcarifer) to elevated temperature and reduced salinity, including estuarine water of multiple cues for detecting settlement habitat. Larval fish raised under elevated CO2 concentrations were attracted by warmer water, but temperature had no effect on fish raised in contemporary CO2 concentrations. In contrast, contemporary larvae were deterred by lower salinity water, where CO2-treated fish showed no such response. Natural estuarine water—of higher temperature, lower salinity, and containing estuarine olfactory cues—was only preferred by fish treated under forecasted high CO2 conditions. We show for the first time that attraction by larval fish towards physicochemical cues can be altered by ocean acidification. Such alterations to perception and evaluation of environmental cues during the critical process of dispersal can potentially have implications for ensuing recruitment and population replenishment. Our study not only shows that freshwater species that spend part of their life cycle in the ocean might also be affected by ocean acidification, but that behavioural responses towards key physicochemical cues can also be negated through elevated CO2 from human emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Able KW (2005) A re-examination of fish estuarine dependence: evidence for connectivity between estuarine and ocean habitats. Estuar Coast Shelf Sci 64:5–17

    Article  Google Scholar 

  • Allen LG, Yoklavich MM, Cailliet GM, Horn MH (2006) Bays and Estuaries. In: Pondella DJ II, Horn MH (eds) The ecology of marine fishes: California and adjacent waters Allen LG. University of California Press Ltd, London, pp 119–148

    Google Scholar 

  • Arvedlund M, Kavanagh K (2009) The senses and environmental cues used by marine larvae of fish and decapod crustaceans to find tropical coastal ecosystems. In: Nagelkerken I (ed) Ecological connectivity among tropical coastal ecosystems. Springer, Dordrecht, Heidelberg, London, New York

    Google Scholar 

  • Balston J (2009) An analysis of the impacts of long-term climate variability on the commercial barramundi (Lates calcarifer) fishery of north-east Queensland, Australia. Fish Res 99:83–89. doi:10.1016/j.fishres.2009.05.001

    Article  Google Scholar 

  • Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat Clim Change 2:38–41. doi:10.1038/nclimate1291

    Article  CAS  Google Scholar 

  • Bignami S, Sponaugle S, Cowen R (2013) Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum. Glob Change Biol 19:996–1006. doi:10.1111/gcb.12133

    Article  Google Scholar 

  • Bodznick D (1978) Calcium ion: an odorant for natural water discriminations and the migratory behavior of sockeye salmon. J Comp Physiol A 127:157–166

    Article  CAS  Google Scholar 

  • Briffa M, de la Haye K, Munday P (2012) High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar Pollut Bull 64:1519–1528. doi:10.1016/j.marpolbul.2012.05.032

    Article  CAS  PubMed  Google Scholar 

  • Caprio J, Shimohara M, Marui T, Harada S, Kiyohara S (2014) Marine teleost locates live prey through pH sensing. Science 344:1154–1156. doi:10.1126/science.1252697

    Article  CAS  PubMed  Google Scholar 

  • Chivers D, McCormick M, Nilsson G, Munday P, Watson S-A, Meekan M, Mitchell M, Corkill K, Ferrari M (2014) Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob Change Biol 20:515–522. doi:10.1111/gcb.12291

    Article  Google Scholar 

  • Chung W-S, Marshall Watson S-A, Munday P, Nilsson G (2014) Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. J Exp Biol 217:323–326. doi:10.1242/jeb.092478

    Article  CAS  PubMed  Google Scholar 

  • Codling EA, Hill NA, Pitchford JW, Simpson SD (2004) Random walk models for the movement and recruitment of reef fish larvae. Mar Ecol Prog Ser 279:215–224

    Article  Google Scholar 

  • Cowen R (2002) Larval dispersal and retention and consequences for for population connectivity. In: Sale PF (ed) Coral reef fishes: dynamcs and diversity in a complex ecosystem. Academic Press, Elsevier, San Diego, California, pp 149–170

    Chapter  Google Scholar 

  • Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527. doi:10.1126/science.1122039

    Article  CAS  PubMed  Google Scholar 

  • Crawshaw LI, Podrabsky JE (2011) Temperature preference: behavioral responses to temperature in fishes. In: Anthony PF (ed.) Encyclopedia of fish physiology: from genome to environment, Elsevier, New York, pp 758–764

  • Dickson A, Millero F (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Pap. doi:10.1016/0198-0149(87)90021-5

    Google Scholar 

  • Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75. doi:10.1111/j.1461-0248.2009.01400.x

    Article  PubMed  Google Scholar 

  • Dixson DL, Jennings AR, Atema J, Munday PL (2014) Odor tracking in sharks is reduced under future ocean acidification conditions. Glob Change Biol 21:1454–1462. doi:10.1111/gcb.12678

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1(1):169–192

    Article  Google Scholar 

  • Edeline E, Lambert P, Rigaud C, Elie P (2006) Effects of body condition and water temperature on Anguilla anguilla glass eel migratory behavior. J Exp Mar Biol Ecol 331:217–225

    Article  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi:10.1093/ICESJMS/FSN048

    Article  CAS  Google Scholar 

  • Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf Sci 88:442–449

    Article  CAS  Google Scholar 

  • Ferrari MC, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lönnstedt O, Chivers DP (2012) Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol 26:553–558. doi:10.1111/j.1365-2435.2011.01951.x

    Article  Google Scholar 

  • Feyrer F, Cloern J, Brown L, Fish M, Hieb K, Baxter R (2015) Estuarine fish communities respond to climate variability over both river and ocean basins. Glob Change Biol 21:3608–3619. doi:10.1111/gcb.12969

    Article  Google Scholar 

  • Gerlach G, Atema J, Kingsford M, Black K, Miller-Sims V (2007) Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci 104:858–863. doi:10.1073/pnas.0606777104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillanders BM, Elsdon TS, Halliday IA, Jenkins GP, Robins JB, Valesini FJ (2011) Potential effects of climate change on Australian estuaries and fish utilising estuaries: a review. Mar Freshw Res 62:1115–1131

    Article  Google Scholar 

  • Glencross B (2006) The nutritional management of barramundi, Lates calcarifer a review. Aquac Nutr 12:291–309. doi:10.1111/j.1365-2095.2006.00410.x

    Article  CAS  Google Scholar 

  • Hamilton TJ, Holcombe A, Tresguerres M (2014) CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning. Proc R Soc B 281:20132509. doi:10.1098/rspb.2013.2509

    Article  PubMed  PubMed Central  Google Scholar 

  • Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212. doi:10.1146/annurev.marine.010908.163708

    Article  Google Scholar 

  • Hofmann G, Smith J, Johnson K, Send U, Levin L (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6:e28983. doi:10.1371/journal.pone.0028983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard PC, Barata EN, Canario AV (2000) Olfactory sensitivity to changes in environmental [Ca (2 +)] in the marine teleost Sparus aurata. J Exp Biol 203:3821–3829

    CAS  PubMed  Google Scholar 

  • Huijbers CM, Nagelkerken I, Lössbroek PA, Schulten IE, Siegenthaler A, Holderied MW, Simpson SD (2012) A test of the senses: fish select novel habitats by responding to multiple cues. Ecology 93:46–55. doi:10.1890/10-2236.1

    Article  PubMed  Google Scholar 

  • Igulu MM, Nagelkerken I, van der Beek M, Schippers M, van Eck R, Mgaya YD (2013) Orientation from open water to settlement areas by reef fish: behavioral flexibility in the use of multiple reliable cues. Mar Ecol Prog Ser 493:243–257. doi:10.3354/meps10542

    Article  Google Scholar 

  • Katersky RS, Carter CG (2007) High growth efficiency occurs over a wide temperature range for juvenile barramundi Lates calcarifer fed a balanced diet. Aquaculture 272:444–450. doi:10.1016/j.aquaculture.2007.09.001

    Article  Google Scholar 

  • Keenan CP (1994) Recent evolution of population structure in Australian barramundi, Lates calcarifer (Bloch): an example of isolation by distance in one dimension. Aust J Mar Freshw Res 45:1123–1148

    Article  Google Scholar 

  • Kingsford MJ, Leis JM, Shanks A, Lindeman KC, Morgan SG, Pineda J (2002) Sensory environments, larval abilities and local self-recruitment. Bull Mar Sci 70:309–340

    Google Scholar 

  • Kinlan B, Gaines S (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020. doi:10.1890/01-0622

    Article  Google Scholar 

  • Kültz D (2012) Osmosensing. Fish Physiology: Eurihaline Fishes, vol 32. Elsevier, New York, pp 45–68

    Google Scholar 

  • Leduc A, Munday P, Brown G, Ferrari M (2013) Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis. Philos Trans R Soc Lond B Biol Sci 368:20120447. doi:10.1098/rstb.2012.0447

    Article  PubMed  PubMed Central  Google Scholar 

  • Leis JM (1991) The pelagic stage of reef fishes: the larval biology of coral reef fishes. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 183–230

    Chapter  Google Scholar 

  • Leis J (2006) Are larvae of demersal fishes plankton or nekton? Adv Mar Biol 51:57–141

    Article  PubMed  Google Scholar 

  • Leis JM, Siebeck U, Dixson DL (2011) How Nemo finds home: the neuroeclogy of dispersal and of population connectivity in larve of marine fishes. Intergrative Comp Biol 51:826–843. doi:10.1093/icb/icr004

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. doi:10.4319/lo.1973.18.6.0897

    Article  CAS  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M et al (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    Article  CAS  Google Scholar 

  • Milton DA (2009) Living in two worlds: diadromous fishes, and factors affecting population connectivity between tropical rivers and coasts. In: Nagelkerken I (ed) ecological connectivity among tropical coastal ecosystems. Springer, Dordrecht, Heidelberg, London, New York

    Google Scholar 

  • Moore R (1982) Spawning and early life history of burramundi, Lates calcarifer (Bloch), in Papua New Guinea. Aust J Mar Freshw Res 33:647–661

    Article  Google Scholar 

  • Mukai Y, Chai LL, Shaleh S, Senoo S (2007) Structure and development of free neuromasts in barramundi, Lates calcarifer (Block). Zool Sci 24:829–835

    Article  PubMed  Google Scholar 

  • Munday P, Dixson D, Donelson J, Jones G, Pratchett M, Devitsina G, Døving K (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci 106:1848–1852. doi:10.1073/pnas.0809996106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munday P, Dixson D, McCormick M, Meekan M, Ferrari M, Chivers D (2010) Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci USA 107:12930–12934. doi:10.1073/pnas.1004519107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myrberg, Fuiman L (2002) The sensory world of coral reef fishes. In: Coral reef fishes: dynamics and diversity in a complex ecosystem Academic, San Diego, p 123–148

  • Nagelkerken I, Connell SD (2015) Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc Natl Acad Sci USA 112:13272–13277. doi:10.1073/pnas.1510856112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagelkerken I, Munday PL (2016) Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob Change Biol 22:974–989. doi:10.1111/gcb.13167

    Article  Google Scholar 

  • Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, Bai M, Chattopadyhay N, Brown EM, Hebert SC, Harris HW (2002) Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish. Proc Natl Acad Sci 99:9231–9236. doi:10.1073/pnas.152294399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson S-A, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Change 2:201–204. doi:10.1038/nclimate1352

    Article  CAS  Google Scholar 

  • Norin T, Malte H, Clark TD (2016) Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Funct Ecol 30:369–378. doi:10.1111/1365-2435.12503

    Article  Google Scholar 

  • Ong J, Rountrey A, Meeuwig J, Newman S, Zinke J, Meekan M (2015) Contrasting environmental drivers of adult and juvenile growth in a marine fish: implications for the effects of climate change. Sci Rep 5:. doi:10.1038/srep10859

    Google Scholar 

  • Pender PJ, Griffin RK (1996) Habitat history of barramundi Lates calcarifer in a north Australian river system based on barium and strontium levels in scales. Trans Am Fish Soc 125:679–689. doi:10.1577/1548-8659

    Article  CAS  Google Scholar 

  • Pistevos JCA, Nagelkerken I, Rossi T, Olmos M, Connell SD (2015) Ocean acidification and global warming impair shark hunting behaviour and growth. Sci Rep 5:16293. doi:10.1038/srep16293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Réale D, Reader S, Sol D, McDougall P, Dingemanse N (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318. doi:10.1111/j.1469-185X.2007.00010.x

    Article  PubMed  Google Scholar 

  • Rossi T, Nagelkerken I, Simpson SD, Pistevos JC, Watson S-AA, Merillet L, Fraser P, Munday PL, Connell SD (2015) Ocean acidification boosts larval fish development but reduces the window of opportunity for successful settlement. Proc Biol Sci 282:20151954. doi:10.1098/rspb.2015.1954

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell DJ, Rimmer MA, McDougall AJ, Kistle SE, Johnston WL (2004) Chapter 35 Stock Enhancement of Barramundi, Lates calcarifer (Bloch), in a Coastal River System in Northern Australia: Stocking Strategies, Survival and Benefit-cost. In: Leber KM, Kitada S, Blankenship HL, Svåsand Sand T (eds.) Stock enhancement and sea ranching: developments, pitfalls and opportunities, 2nd edn, Blackwell Publishing Ltd

  • Sabatés A (1990) Changes in the heterogeneity of mesoscale distribution patterns of larval fish associated with a shallow coastal haline front. Estuar Coast Shelf Sci 30:131–140

    Article  Google Scholar 

  • Sale PF (2004) Connectivity, recruitment variation, and the structure of reef fish communities. Integr Comp Biol 44:390–399

    Article  PubMed  Google Scholar 

  • Serrano X, Grosell M, Serafy J (2010) Salinity selection and preference of the grey snapper Lutjanus griseus: field and laboratory observations. J Fish Biol 76:. doi:10.1111/j.1095-8649.2010.02585.x

    Article  PubMed  Google Scholar 

  • Shaw E, Munday P, McNeil B (2013) The role of CO2 variability and exposure time for biological impacts of ocean acidification. Geophys Res Lett 40:4685–4688. doi:10.1002/grl.50883

    Article  CAS  Google Scholar 

  • Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7:917–920. doi:10.1098/rsbl.2011.0293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith NP (1983) A comparison of winter and summer temperature variations in a shallow bar-built estuary. Estuaries 6:2–9. doi:10.2307/1351801

    Article  Google Scholar 

  • Thresher RE, Colin PL, Bell LJ (1989) Planktonic duration, distribution and population structure of western and central Pacific damselfishes (Pomacentridae). Copeia 23:420–434

    Article  Google Scholar 

  • Wellington GM, Victor BC (1989) Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar Biol 101:557–567

    Article  Google Scholar 

Download references

Acknowledgements

We thank Peter Frasier for his guidance and help in building the rearing tanks. This study was supported by an ARC Future Fellowship to I.N. (Grant No. FT120100183). S.D.C. was supported by Future Fellowship Grant No. FT0991953.

Author contribution statement

JCAP, TR and IN conceived and designed the experiments. JCAP and TR performed the experiments. JCAP analysed the data. JCAP, IN and SDC wrote the manuscript; other authors provided editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Nagelkerken.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Joel Trexler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pistevos, J.C.A., Nagelkerken, I., Rossi, T. et al. Ocean acidification alters temperature and salinity preferences in larval fish. Oecologia 183, 545–553 (2017). https://doi.org/10.1007/s00442-016-3778-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3778-z

Keywords

Navigation