Effectiveness of baseline corticosterone as a monitoring tool for fitness: a meta-analysis in seabirds

Abstract

Many ecosystems have experienced anthropogenically induced changes in biodiversity, yet predicting these patterns has been difficult. Recently, individual behavioural and physiological measures have been proposed as more rapid links between environmental variation and fitness compared to demographics. Glucocorticoid hormones have received much attention given that they mediate energetic demands, metabolism, and foraging behaviour. However, it is currently unclear whether glucocorticoids can reliably predict environmental and fitness-related traits and whether they may be useful in specific groups of taxa. In particular, seabirds are a well-studied avian group often employed as biomonitoring tools for environmental change given their wide distribution and reliance on large oceanic patterns. Despite the increase in studies attempting to link variation in baseline corticosterone (the primary avian glucocorticoid) to variation in fitness-related traits in seabirds, there has been no comprehensive review of the relationship in this taxon. We present a phylogenetically controlled systematic review and meta-analysis of correlative and experimental studies examining baseline corticosterone as a predictor of fitness-related traits relevant to predicting seabird population health. Our results suggest that, while variation in baseline corticosterone may be a useful predictor of larger-scale environmental traits such as overall food availability and fitness-related traits such as reproductive success, this hormone may not be sensitive enough to detect variation in body condition, foraging effort, and breeding effort. Overall, our results support recent work suggesting that the use of baseline glucocorticoids as conservation biomarkers is complex and highly context dependent, and we suggest caution in their use and interpretation as simplified, direct biomarkers of fitness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adams DC (2008) Phylogenetic meta-analysis. Evolution 62:567–572. doi:10.1111/j.1558-5646.2007.00314.x

    Article  PubMed  Google Scholar 

  2. Angelier F, Clement-Chastel C, Gabrielsen GW, Chastel O (2007a) Corticosterone and time-activity budget: an experiment with Black-legged kittiwakes. Horm Behav 52:482–491. doi:10.1016/j.yhbeh.2007.07.003

    CAS  Article  PubMed  Google Scholar 

  3. Angelier F, Moe B, Clement-Chastel C et al (2007b) Corticosterone levels in relation to change of mate in Black-legged kittiwakes. Condor 109:668–674. doi:10.1242/jeb.089763

    Article  Google Scholar 

  4. Angelier F, Shaffer SA, Weimerskirch H et al (2007c) Corticosterone and foraging behavior in a pelagic seabird. Physiol Biochem Zool 80:283–292. doi:10.1086/512585

    CAS  Article  PubMed  Google Scholar 

  5. Angelier F, Bost C-A, Giraudeau M et al (2008) Corticosterone and foraging behavior in a diving seabird: the Adelie penguin, Pygoscelis adeliae. Gen Comp Endocrinol 156:134–144. doi:10.1016/j.ygcen.2007.12.001

    CAS  Article  PubMed  Google Scholar 

  6. Angelier F, Giraudeau M, Bost C-AC-A et al (2009) Are stress hormone levels a good proxy of foraging success? An experiment with King Penguins, Aptenodytes patagonicus. J Exp Biol 212:2824–2829. doi:10.1242/jeb.027722

    CAS  Article  PubMed  Google Scholar 

  7. Angelier F, Wingfield JC, Weimerskirch H, Chastel O (2010) Hormonal correlates of individual quality in a long-lived bird: a test of the “corticosterone-fitness hypothesis”. Biol Lett 6:846–849. doi:10.1098/rsbl.2010.0376

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Angelier F, Wingfield JC, Parenteau C et al (2015) Does short-term fasting lead to stressed-out parents? A study of incubation commitment and the hormonal stress responses and recoveries in snow petrels. Horm Behav 67:28–37. doi:10.1016/j.yhbeh.2014.11.009

    CAS  Article  PubMed  Google Scholar 

  9. Arlettaz R, Nussle S, Baltic M et al (2015) Disturbance of wildlife by outdoor winter recreation: allostatic stress response and altered activity-energy budgets. Ecol Appl 25:1197–1212. doi:10.1890/14-1141.1.sm

    Article  PubMed  Google Scholar 

  10. Astheimer LB, Buttemer WA, Wingfield JC (1992) Interactions of corticosterone with feeding, activity and metabolism in Passerine birds. Ornis Scand 23:355–365. doi:10.2307/3676661

    Article  Google Scholar 

  11. Balbontín J, Møller AP, Hermosell IG et al (2012) Lifetime individual plasticity in body condition of a migratory bird. Biol J Linn Soc 105:420–434. doi:10.1111/j.1095-8312.2011.01800.x

    Article  Google Scholar 

  12. Benowitz-Fredericks ZM, Shultz MT, Kitaysky AS (2008) Stress hormones suggest opposite trends of food availability for planktivorous and piscivorous seabirds in 2 years. Deep Res Part II Top Stud Oceanogr 55:1868–1876. doi:10.1016/j.dsr2.2008.04.007

    Article  Google Scholar 

  13. Berger-Tal O, Polak T, Oron A et al (2011) Integrating animal behavior and conservation biology: a conceptual framework. Behav Ecol 22:236–239. doi:10.1093/beheco/arq224

    Article  Google Scholar 

  14. Bodey TW, Jessopp MJ, Votier SC et al (2014) Seabird movement reveals the ecological footprint of fishing vessels. Curr Biol 24:R514–R515. doi:10.1016/j.cub.2014.04.041

    CAS  Article  PubMed  Google Scholar 

  15. Boncoraglio G, Saino N (2007) Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Funct Ecol 21:134–142. doi:10.1111/j.1365-2435.2006.01207.x

    Article  Google Scholar 

  16. Bonier F, Martin PR, Moore IT, Wingfield JC (2009) Do baseline glucocorticoids predict fitness? Trends Ecol Evol 24:634–642. doi:10.1016/j.tree.2009.04.013

    Article  PubMed  Google Scholar 

  17. Bonier F, Moore IT, Robertson RJ (2011) The stress of parenthood? Increased glucocorticoids in birds with experimentally enlarged broods. Biol Lett 7:944–946. doi:10.1098/rsbl.2011.0391

    Article  PubMed  PubMed Central  Google Scholar 

  18. Breuner CW, Patterson SH, Hahn TP (2008) In search of relationships between the acute adrenocortical response and fitness. Gen Comp Endocrinol 157:288–295. doi:10.1016/j.ygcen.2008.05.017

    CAS  Article  PubMed  Google Scholar 

  19. Brooks S, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455. doi:10.2307/1390675

    Google Scholar 

  20. Bukacinska M, Bukacinski D, Spaans AL (2016) Attendance and diet in relation to breeding success in herring gulls (Larus argentatus). Auk 113:300–309

    Google Scholar 

  21. Busch DS, Hayward LS (2009) Stress in a conservation context: a discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biol Conserv 142:2844–2853. doi:10.1016/j.biocon.2009.08.013

    Article  Google Scholar 

  22. Chastel O, Lacroix A, Weimerskirch H, Gabrielsen GW (2005) Modulation of prolactin but not corticosterone responses to stress in relation to parental effort in a long-lived bird. Horm Behav 47:459–466. doi:10.1016/j.yhbeh.2004.10.009

    CAS  Article  PubMed  Google Scholar 

  23. Chown SL, Gaston KJ (2015) Macrophysiology—progress and prospects. Funct Ecol 30:330–344. doi:10.1111/1365-2435.12510

    Article  Google Scholar 

  24. Cooke SJ, O’Connor CM (2010) Making conservation physiology relevant to policy makers and conservation practitioners. Conserv Lett 3:159–166. doi:10.1111/j.1755-263X.2010.00109.x

    Article  Google Scholar 

  25. Cooke SJ, Sack L, Franklin CE et al (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conserv Physiol 1:1–23. doi:10.1093/conphys/cot001

    Article  Google Scholar 

  26. Cooke SJ, Blumstein DT, Buchholz R et al (2014) Physiology, behavior, and conservation. Physiol Biochem Zool 87:1–14. doi:10.1086/671165

    Article  PubMed  Google Scholar 

  27. Cooper H, Hedges LV, Valentine JC (2009) Handbook of research synthesis and meta-analysis. Russell Sage Foundation, New York

    Google Scholar 

  28. Croll DA, Gaston AJ, Noble DG (1991) Adaptive loss of mass in thick-billed murres. Condor 93:496–502. doi:10.2307/1368181

    Article  Google Scholar 

  29. Crossin GT, Phillips RA, Lattin CR et al (2013) Corticosterone mediated costs of reproduction link current to future breeding. Gen Comp Endocrinol 193:112–120. doi:10.1016/j.ygcen.2013.07.011

    CAS  Article  PubMed  Google Scholar 

  30. Crossin GT, Love OP, Cooke SJ, Williams TD (2016a) Glucocorticoid manipulations in free-living animals: considerations of dose delivery, life-history context and reproductive state. Funct Ecol 30:116–125. doi:10.1111/1365-2435.12482

    Article  Google Scholar 

  31. Crossin GT, Phillips RA, Lattin CR et al (2016b) Physiological costs of reproduction and carryover effects in annually versus biennially breeding albatrosses (Thalassarche spp.). Antarct Sci

  32. Croxall JP, Butchart SHM, Lascelles B et al (2012) Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv Int 22:1–34. doi:10.1017/S0959270912000020

    Article  Google Scholar 

  33. Dantzer B, Fletcher QE, Boonstra R, Sheriff MJ (2014) Measures of physiological stress: a transparent or opaque window into the status, management and conservation of species? Conserv Physiol 2:1–18. doi:10.1093/conphys/cou023

    Article  Google Scholar 

  34. Descamps SS, Strøm H, Steen H et al (2013) Decline of an arctic top predator: synchrony in colony size fluctuations, risk of extinction and the subpolar gyre. Oecologia 173:1271–1282. doi:10.1007/s00442-013-2701-0

    Article  PubMed  Google Scholar 

  35. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. doi:10.1093/molbev/mss075

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Egger M, Smith GD (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634

    CAS  Article  Google Scholar 

  37. Elliott KH, Welcker J, Gaston AJ et al (2013) Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds. Biol Open 2:580–586. doi:10.1242/bio.20134358

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev Camb Philos Soc 81:117–142. doi:10.1017/S1464793105006949

    Article  PubMed  Google Scholar 

  39. Fokidis HB, Des Roziers MB, Sparr R et al (2012) Unpredictable food availability induces metabolic and hormonal changes independent of food intake in a sedentary songbird. J Exp Biol 215:2920–2930. doi:10.1242/jeb.071043

    Article  PubMed  Google Scholar 

  40. Frederiksen M, Mavor RA, Wanless S (2007) Seabirds as environmental indicators: the advantages of combining data sets. Mar Ecol Prog Ser 352:205–211. doi:10.3354/meps07071

    Article  Google Scholar 

  41. Gaston AJ, Mallory ML, Gilchrist HG (2012) Populations and trends of Canadian Arctic seabirds. Polar Biol 35:1221–1232. doi:10.1007/s00300-012-1168-5

    Article  Google Scholar 

  42. Gaston AJ, Elliott KH, Ropert-Coudert Y et al (2013) Modeling foraging range for breeding colonies of thick-billed murres Uria lomvia in the Eastern Canadian Arctic and potential overlap with industrial development. Biol Conserv 168:134–143. doi:10.1016/j.biocon.2013.09.018

    Article  Google Scholar 

  43. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  44. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  45. Guglielmo CG, Hara PDO, Williams TD (2002) Extrinsic and intrinsic sources of variation in plasma lipid metabolites of free-living western sandpipers (Calidris mauri). Auk 119:437–445. doi:10.1642/0004-8038(2002)119[0437:EAISOV]2.0.CO;2

  46. Hackett SJ, Kimball RT, Reddy S et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768. doi:10.1126/science.1157704

    CAS  Article  PubMed  Google Scholar 

  47. Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22. doi:10.1002/ana.22635

    Article  Google Scholar 

  48. Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–953. doi:10.1126/science.1149345

    CAS  Article  PubMed  Google Scholar 

  49. Harding AMA, Piatt JF, Schmutz JA (2007) Seabird behavior as an indicator of food supplies: sensitivity across the breeding season. Mar Ecol Prog Ser 352:269–274. doi:10.3354/meps07072

    Article  Google Scholar 

  50. Hau M, Ricklefs RE, Wikelski M et al (2010) Corticosterone, testosterone and life-history strategies of birds. Proc R Soc B-Biol Sci 277:3203–3212. doi:10.1098/rspb.2010.0673

    CAS  Article  Google Scholar 

  51. Hayward LS, Bowles AE, Ha JC, Wasser SK (2011) Impacts of acute and long-term vehicle exposure on physiology and reproductive success of the northern spotted owl. Ecosphere 2:1–20. doi:10.1890/ES10-00199.1

    Article  Google Scholar 

  52. Hennin HL, Wells-Berlin AM, Love OP (2016) Baseline glucocorticoids are drivers of body mass gain in a diving seabird. Ecol Evol 6:1702–1711. doi:10.1002/ece3.1999

    Article  PubMed  PubMed Central  Google Scholar 

  53. Herring G, Cook MI, Gawlik DE, Call EM (2011) Food availability is expressed through physiological stress indicators in nestling white ibis: a food supplementation experiment. Funct Ecol 25:682–690. doi:10.1111/j.1365-2435.2010.01792.x

    Article  Google Scholar 

  54. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528. doi:10.1126/science.1189930

    CAS  Article  PubMed  Google Scholar 

  55. Horvathova T, Nakagawa S, Uller T (2011) Strategic female reproductive investment in response to male attractiveness in birds. Proc R Soc B Biol Sci 279:163–170. doi:10.1098/rspb.2011.0663

    Article  Google Scholar 

  56. Hussey NE, Kessel ST, Aarestrup K et al (2015) Aquatic animal telemetry: a panoramic window into the underwater world. Science 348:1255642–1–1255642–10. doi:10.1126/science.1255642

    Article  Google Scholar 

  57. Jacobs SR, Elliott KH, Gaston AJ (2013) Parents are a Drag: long-lived birds share the cost of increased foraging effort with their offspring, but males pass on more of the costs than females. PLoS One 8:e54594. doi:10.1371/journal.pone.0054594

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Jenni-Eiermann S, Glaus E, Grüebler M et al (2008) Glucocorticoid response to food availability in breeding barn swallows (Hirundo rustica). Gen Comp Endocrinol 155:558–565. doi:10.1016/j.ygcen.2007.08.011

    CAS  Article  PubMed  Google Scholar 

  59. Jetz W, Thomas GH, Joy JB et al (2012) The global diversity of birds in space and time. Nature 491:444–448. doi:10.1038/nature11631

    CAS  Article  PubMed  Google Scholar 

  60. Kitaysky AS, Wingfield JCC, Piatt JFF (1999) Dynamics of food availability, body condition and physiological stress response in breeding Black-legged kittiwakes. Funct Ecol 13:577–584. doi:10.1046/j.1365-2435.1999.00352.x

    Article  Google Scholar 

  61. Kitaysky AS, Piatt JF, Wingfield JC (2007) Stress hormones link food availability and population processes in seabirds. Mar Ecol Prog Ser 352:245–258. doi:10.3354/meps07074

    Article  Google Scholar 

  62. Kitaysky AS, Piatt JF, Hatch SA et al (2010) Food availability and population processes: severity of nutritional stress during reproduction predicts survival of long-lived seabirds. Funct Ecol 24:625–637. doi:10.1111/j.1365-2435.2009.01679.x

    Article  Google Scholar 

  63. Lanctot RB, Hatch SA, Gill VA, Eens M (2003) Are corticosterone levels a good indicator of food availability and reproductive performance in a kittiwake colony? Horm Behav 43:489–502. doi:10.1016/S0018-506X(03)00030-8

    CAS  Article  PubMed  Google Scholar 

  64. Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 148:132–149. doi:10.1016/j.ygcen.2006.02.013

    CAS  Article  PubMed  Google Scholar 

  65. Leclaire S, Bourret V, Wagner RH et al (2011) Behavioral and physiological responses to male handicap in chick-rearing black-legged kittiwakes. Behav Ecol 22:1156–1165. doi:10.1093/beheco/arr149

    Article  Google Scholar 

  66. Love OP, Breuner CW, Vézina F, Williams TD (2004) Mediation of a corticosterone-induced reproductive conflict. Horm Behav 46:59–65. doi:10.1016/j.yhbeh.2004.02.001

    CAS  Article  PubMed  Google Scholar 

  67. Love OP, Madliger CL, Bourgeon S et al (2014) Evidence for baseline glucocorticoids as mediators of reproductive investment in a wild bird. Gen Comp Endocrinol 199:65–69. doi:10.1016/j.ygcen.2014.01.001

    CAS  Article  PubMed  Google Scholar 

  68. Lynn SE, Stamplis TB, Barrington WT et al (2010) Food, stress, and reproduction: short-term fasting alters endocrine physiology and reproductive behavior in the zebra finch. Horm Behav 58:214–222. doi:10.1016/j.yhbeh.2010.03.015

    CAS  Article  PubMed  Google Scholar 

  69. Madliger CL, Love OP (2014) The need for a predictive, context-dependent approach to the application of stress hormones in conservation. Conserv Biol 28:283–287. doi:10.1111/cobi.12185

    Article  PubMed  Google Scholar 

  70. Madliger CL, Love OP (2015) The power of physiology in changing landscapes: considerations for the continued integration of conservation and physiology. Integr Comp Biol 55:1–9

    Article  Google Scholar 

  71. Madliger CL, Love OP (2016) Do baseline glucocorticoids simultaneously represent fitness and environmental quality in an aerial insectivore? Oikos. doi:10.1111/oik.03354

    Google Scholar 

  72. Madliger CL, Semeniuk CAD, Harris CM, Love OP (2015) Assessing baseline stress physiology as an integrator of environmental quality in a wild avian population: implications for use as a conservation biomarker. Biol Conserv 192:409–417. doi:10.1016/j.biocon.2015.10.021

    Article  Google Scholar 

  73. Madliger CL, Cooke SJ, Crespi EJ et al (2016) Success stories and emerging themes in conservation physiology. Conserv Physiol 4:1–17. doi:10.1093/conphys/cov057

    Article  Google Scholar 

  74. Mark MM, Rubenstein DR (2013) Physiological costs and carry-over effects of avian interspecific brood parasitism influence reproductive tradeoffs. Horm Behav 63:717–722. doi:10.1016/j.yhbeh.2013.03.008

    Article  PubMed  Google Scholar 

  75. McEwen BS, Wingfield JC (2010) What is in a name? Integrating homeostasis, allostasis and stress. Horm Behav 57:105–111. doi:10.1016/j.yhbeh.2009.09.011

    Article  PubMed  Google Scholar 

  76. Moody AT, Hobson KA, Gaston AJ (2012) High-arctic seabird trophic variation revealed through long-term isotopic monitoring. J Ornithol 153:1067–1078. doi:10.1007/s10336-012-0836-0

    Article  Google Scholar 

  77. Nakagawa S, Santos ESA (2012) Methodological issues and advances in biological meta-analysis. Evol Ecol 26:1253–1274. doi:10.1007/s10682-012-9555-5

    Article  Google Scholar 

  78. O’Connor CM, Gilmour KM, Arlinghaus R et al (2010) Seasonal carryover effects following the administration of cortisol to a wild teleost fish. Physiol Biochem Zool 83:950–957. doi:10.1086/656286

    Article  PubMed  Google Scholar 

  79. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analysis of ecological systems. Ohio State University Press, Columbus, pp 154–177

    Google Scholar 

  80. Ouyang JQ, Sharp PJ, Dawson A et al (2011) Hormone levels predict individual differences in reproductive success in a passerine bird. Proc R Soc B Biol Sci 278:2537–2545. doi:10.1098/rspb.2010.2490

    CAS  Article  Google Scholar 

  81. Ouyang JQ, Sharp P, Quetting M, Hau M (2013) Endocrine phenotype, reproductive success and survival in the great tit, Parus major. J Evol Biol 26:1988–1998. doi:10.1111/jeb.12202

    CAS  Article  PubMed  Google Scholar 

  82. Ozgul A, Childs DZ, Oli MK et al (2010) Coupled dynamics of body mass and population growth in response to environmental change. Nature 466:482–485. doi:10.1038/nature09210

    CAS  Article  PubMed  Google Scholar 

  83. Paleczny M, Hammill E, Karpouzi V, Pauly D (2015) Population trend of the world’s monitored seabirds, 1950–2010. PLoS One 10:e0129342. doi:10.1371/journal.pone.0129342

    Article  PubMed  PubMed Central  Google Scholar 

  84. Parsons M, Mitchell I, Butler A et al (2008) Seabirds as indicators of the marine environment. ICES J Mar Sci 65:1520–1526. doi:10.1093/icesjms/fsn155

    Article  Google Scholar 

  85. Piatt JF, Harding AMA (2007) Population ecology of seabirds in cook inlet. In: Spies R (ed) Long-term ecological change in the Northern Gulf of Alaska. pp 335–352

  86. Piatt JF, Sydeman WJ (2007) Theme Section: seabirds as indicators of marine ecosystems. Mar Ecol Prog Ser 352:199–309. doi:10.3354/meps07070

    Article  Google Scholar 

  87. Piatt JF, Harding AM, Shultz M et al (2007) Seabirds as indicators of marine food supplies: cairns revisited. Mar Ecol Prog Ser 352:221–234. doi:10.3354/meps07078

    Article  Google Scholar 

  88. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11. doi:10.1159/000323281

    Google Scholar 

  89. Ponchon A, Grémillet D, Christensen-Dalsgaard S et al (2014) When things go wrong: intra-season dynamics of breeding failure in a seabird. Ecosphere 5:1–19. doi:10.1890/ES13-00233.1

    Article  Google Scholar 

  90. Prokop ZM, Michalczyk Ł, Drobniak SM et al (2012) Meta-analysis suggests choosy females get sexy sons more than “Good genes”. Evolution (N Y) 66:2665–2673. doi:10.1111/j.1558-5646.2012.01654.x

    Google Scholar 

  91. Ramos R, Garnier R, Gonzalez-Solis J, Boulinier T (2014) Long antibody persistence and transgenerational transfer of immunity in a long-lived vertebrate. Am Nat 184:764–776. doi:10.1086/678400

    Article  PubMed  Google Scholar 

  92. Ricklefs RE, WIlkelski M (2002) The physiology/life history nexus. Trends Ecol Evol 17:462–469

    Article  Google Scholar 

  93. Riechert J, Becker PH, Chastel O (2014) Predicting reproductive success from hormone concentrations in the common tern (Sterna hirundo) while considering food abundance. Oecologia 176:715–727. doi:10.1007/s00442-014-3040-5

    Article  PubMed  Google Scholar 

  94. Sanderson JL, Young AJ, Hodge SJ et al (2014) Hormonal mediation of a carry-over effect in a wild cooperative mammal. Funct Ecol 28:1377–1386. doi:10.1111/1365-2435.12307

    Article  Google Scholar 

  95. Satterthwaite WH, Kitaysky AS, Mangel M (2012) Linking climate variability, productivity and stress to demography in a long-lived seabird. Mar Ecol Prog Ser 454:221–235. doi:10.3354/meps09539

    Article  Google Scholar 

  96. Schultner J, Moe B, Chastel O et al (2014) Corticosterone mediates carry-over effects between breeding and migration in the kittiwake Rissa tridactyla. Mar Ecol Prog Ser 496:125–133. doi:10.3354/meps10603

    CAS  Article  Google Scholar 

  97. Strasser EH, Heath JA (2013) Reproductive failure of a human-tolerant species, the American kestrel, is associated with stress and human disturbance. J Appl Ecol 50:912–919. doi:10.1111/1365-2664.12103

    Article  Google Scholar 

  98. Thierry A-M, Brajon S, Spee M et al (2014) Differential effects of increased corticosterone on behavior at the nest and reproductive output of chick-rearing Adelie penguins. Behav Ecol Sociobiol 68:721–732. doi:10.1007/s00265-014-1685-z

    Article  Google Scholar 

  99. Weimerskirch H, Barbraud C, Lys P (2000) Sex differences in parental investment and chick growth in Wandering albatrosses: fitness consequences. Ecology 81:309–318

    Article  Google Scholar 

  100. Weimerskirch H, Cherel Y, Delord K et al (2014) Lifetime foraging patterns of the wandering albatross: life on the move! J Exp Mar Bio Ecol 450:68–78. doi:10.1016/j.jembe.2013.10.021

    Article  Google Scholar 

  101. Wendeln H, Becker PH (1999) Effects of parental quality and effort on the reproduction of common terns. J Anim Ecol 68:205–214. doi:10.1046/j.1365-2656.1999.00276.x

    Article  Google Scholar 

  102. Williams CT, Kitaysky AS, Kettle AB, Buck CL (2008) Corticosterone levels of tufted puffins vary with breeding stage, body condition index, and reproductive performance. Gen Comp Endocrinol 158:29–35. doi:10.1016/j.ygcen.2008.04.018

    CAS  Article  PubMed  Google Scholar 

  103. Wingfield JC, Sapolsky RM (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15:711–724. doi:10.1046/j.1365-2826.2003.01033.x

    CAS  Article  PubMed  Google Scholar 

Download references

Author contribution statement

GHS and OPL conceived and designed the search methodology. GHS searched the literature, collected the data, and calculated effect sizes. GHS and CJD analysed the data. GHS, CJD, and CLM wrote the manuscript with additional edits from OPL.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Graham H. Sorenson.

Additional information

Communicated by Indrikis Krams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 545 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sorenson, G.H., Dey, C.J., Madliger, C.L. et al. Effectiveness of baseline corticosterone as a monitoring tool for fitness: a meta-analysis in seabirds. Oecologia 183, 353–365 (2017). https://doi.org/10.1007/s00442-016-3774-3

Download citation

Keywords

  • Glucocorticoids
  • Systematic review
  • Cort-fitness
  • Biomarker
  • Food availability
  • Seabirds