, Volume 183, Issue 1, pp 161–175 | Cite as

A test of trophic cascade theory: fish and benthic assemblages across a predator density gradient on coral reefs

  • Jordan M. CaseyEmail author
  • Andrew H. Baird
  • Simon J. Brandl
  • Mia O. Hoogenboom
  • Justin R. Rizzari
  • Ashley J. Frisch
  • Christopher E. Mirbach
  • Sean R. Connolly
Community ecology – original research


Removal of predators is often hypothesized to alter community structure through trophic cascades. However, despite recent advances in our understanding of trophic cascades, evidence is often circumstantial on coral reefs because fishing pressure frequently co-varies with other anthropogenic effects, such as fishing for herbivorous fishes and changes in water quality due to pollution. Australia’s outer Great Barrier Reef (GBR) has experienced fishing-induced declines of apex predators and mesopredators, but pollution and targeting of herbivorous fishes are minimal. Here, we quantify fish and benthic assemblages across a fishing-induced predator density gradient on the outer GBR, including apex predators and mesopredators to herbivores and benthic assemblages, to test for evidence of trophic cascades and alternative hypotheses to trophic cascade theory. Using structural equation models, we found no cascading effects from apex predators to lower trophic levels: a loss of apex predators did not lead to higher levels of mesopredators, and this did not suppress mobile herbivores and drive algal proliferation. Likewise, we found no effects of mesopredators on lower trophic levels: a decline of mesopredators was not associated with higher abundances of algae-farming damselfishes and algae-dominated reefs. These findings indicate that top-down forces on coral reefs are weak, at least on the outer GBR. We conclude that predator-mediated trophic cascades are probably the exception rather than the rule in complex ecosystems such as the outer GBR.


Community ecology Fishing Herbivory Marine protected areas Top-down effects 



We thank O. Lönnstedt, Lizard Island Research Station, and the crew of the Research Vessel James Kirby for field support. We also thank J. Alvarez Romero, D. E. Burkepile, J. H. Choat, J. S. Lefcheck, S. A. Sandin, one anonymous reviewer, and the Ecological Modelling Research Group at James Cook University for helpful comments and discussions that improved the manuscript. Funds were provided by the ARC Centre of Excellence for Coral Reef Studies and James Cook University. All work was carried out under the Great Barrier Reef Marine Parks Authority Permit No. G13/36059.1.

Author contribution statement

JMC, AHB, MOH, JRR, AJF, and SRC designed the study. JMC, AHB, SJB, MOH, JRR, AJF, and CEM collected the data. JMC and SJB performed modelling. JMC wrote the first draft of the manuscript, and all authors contributed substantially to revisions.

Supplementary material

442_2016_3753_MOESM1_ESM.pdf (305 kb)
Supplementary material 1 (PDF 304 kb)


  1. Alongi DM, McKinnon AD (2005) The cycling and fate of terrestrially-derived sediments and nutrients in the coastal zone of the Great Barrier Reef shelf. Mar Poll Bull 51:239–252CrossRefGoogle Scholar
  2. Alvarez-Filip L, Côté IM, Gill JA, Watkinson AR, Dulvy NK (2011b) Region-wide temporal and spatial variation in Caribbean reef architecture: is coral cover the whole story? Glob Change Biol 17:2470–2477CrossRefGoogle Scholar
  3. Alvarez-Filip L, Gill JA, Dulvy NK (2011a) Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere 2:118CrossRefGoogle Scholar
  4. Bates D, Maechler M, Bolker BM, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  5. Baum JK, Worm BM (2009) Cascading top-down effects of changing oceanic predator abundances. J Anim Ecol 78:699–714CrossRefPubMedGoogle Scholar
  6. Bellwood DR, Wainwright PC, Fulton CJ, Hoey AS (2006) Functional versatility supports coral reef biodiversity. Proc R Soc B 273:101–107CrossRefPubMedGoogle Scholar
  7. Beukers JS, Jones GP (1998) Habitat complexity modifies the impact of piscivores on a coral reef fish population. Oecologia 114:50–59CrossRefGoogle Scholar
  8. Borer ET, Seabloom EW, Shurin JB, Anderson KE, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2005) What determines the strength of a trophic cascade? Ecology 86:528–537CrossRefGoogle Scholar
  9. Brandl SJ, Emslie MJ, Ceccarelli DM (2016) Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere (in press) Google Scholar
  10. Byrnes J, Stachowicz JJ, Hultgren KM, Hughes AR, Olyarnik SV, Thornbert CS (2006) Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour. Ecol Lett 9:61–71PubMedGoogle Scholar
  11. Carassou L, Léopold M, Guillemot N, Wantiez L, Kulbicki M (2013) Does herbivorous fish protection really improve coral reef resilience? A case study from New Caledonia (South Pacific). PLoS One 8:e60564CrossRefPubMedPubMedCentralGoogle Scholar
  12. Casey JM, Ainsworth TD, Choat JH, Connolly SR (2014) Farming behaviour of reef fishes increases the prevalence of coral disease associated microbes and black band disease. Proc R Soc B 281:20141032CrossRefPubMedPubMedCentralGoogle Scholar
  13. Casey JM, Choat JH, Connolly SR (2015) Coupled dynamics of territorial damselfishes and juvenile corals on the reef crest. Coral Reefs 34:1–11CrossRefGoogle Scholar
  14. Cebrian J, Shurin JB, Borer ET, Cardinale BJ, Ngai JT, Smith MD, Fagan WF (2009) Producer nutritional quality controls ecosystem trophic structure. PloS One 4:e4929CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ceccarelli DM, Hughes TP, McCook LJ (2006) Impacts of simulated overfishing on the territoriality of coral reef damselfish. Mar Ecol Prog Ser 309:255–256CrossRefGoogle Scholar
  16. Choat JH, Robbins WD, Clements KD (2004) The trophic status of herbivorous fishes on coral reefs. II. Food processing modes and trophodynamics. Mar Biol 145:445–454CrossRefGoogle Scholar
  17. Duffy JE, Reynolds PL, Bostrom C, Coyer JA, Cusson M, Donadi S, Douglass JG, Eklof JS, Engelen AH, Eriksson BK, Fredriksen S, Gamfeldt L, Gustafsson C, Hoarau G, Hori M, Hovel K, Iken K, Lefcheck JS, Moksnes P-O, Nakaoka M, O’Connor MI, Olsen JL, Richardson JP, Ruesnik JL, Sotka EE, Thromar J, Whalen MA, Stachowicz JJ (2015) Biodiversity mediates top-down control in eelgrass ecosystems: a global comparative-experimental approach. Ecol Lett 18:696–705CrossRefPubMedGoogle Scholar
  18. Dulvy NK, Freckleton RP, Polunin NVC (2004) Coral reef cascades and the indirect effects of predator removal by exploitation. Ecol Lett 7:410–416CrossRefGoogle Scholar
  19. Edwards KF, Aquilino KM, Best RJ, Sellheim KL, Stachowicz JJ (2010) Prey diversity is associated with weaker consumer effects in a meta-analysis of benthic marine experiments. Ecol Lett 13:194–201CrossRefPubMedGoogle Scholar
  20. Edwards CB, Friedlander AM, Green AG, Hardt MJ, Sala E, Sweatman HP, Williams ID, Zglicynski B, Sandin S, Smith JE (2014) Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc R Soc B 281:20131835CrossRefPubMedPubMedCentralGoogle Scholar
  21. Emslie MJ, Cheal AJ, Sweatman H, DeLean S (2008) Recovery from disturbance of coral and reef fish communities on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 371:177–190CrossRefGoogle Scholar
  22. Emslie MJ, Logan M, Williamson DH, Ayling AM, MacNeil MA, Ceccarelli D, Cheal AJ, Evans RD, Johns KA, Jonker MJ, Miller IR, Osborne K, Russ GR, Sweatman HPA (2015) Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr Biol 25:1–10CrossRefGoogle Scholar
  23. Eriksson BK, Ljunggren L, Sandström A, Johansson G, Mattila J, Rubach A, Raberg S, Snickars M (2009) Declines in predatory fish promote bloom-forming macroalgae. Ecol Appl 19:1975–1988CrossRefPubMedGoogle Scholar
  24. Estes JA, Tinker MT, Williams TM, Doak DF (1998) Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:473–476CrossRefPubMedGoogle Scholar
  25. Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK (2010) Patterns and ecosystem consequences of shark declines in the ocean. Ecol Lett 13:1055–1071PubMedGoogle Scholar
  26. Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder M, Nielsen A, Sibert J (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249CrossRefGoogle Scholar
  27. Fox J (2003) Effect displays in R for generalized linear models. J Stat Soft 8:1–27CrossRefGoogle Scholar
  28. Friedlander AM, DeMartini EE (2002) Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian Islands: the effects of fishing down apex predators. Mar Ecol Prog Ser 230:253–264CrossRefGoogle Scholar
  29. Frisch AJ, Baker R, Hobbs J-PA, Nankervis L (2008) A quantitative comparison of recreational spearfishing and linefishing on the Great Barrier Reef: implications for management of multi-sector coral reef fisheries. Coral Reefs 27:85–95CrossRefGoogle Scholar
  30. Frisch AJ, Ireland M, Baker R (2014) Trophic ecology of large predatory reef fishes: energy pathways, trophic level, and implications for fisheries in a changing climate. Mar Biol 161:61–73CrossRefGoogle Scholar
  31. Frisch AJ, Ireland M, Rizzari JR, Lonnstedt OM, Magnenat KA, Mirbach CE, Hobbs J-PA (2016) Reassessing the trophic role of reef sharks as apex predators on coral reefs. Coral Reefs 35:459–472CrossRefGoogle Scholar
  32. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Graham NAJ, Evans RD, Russ GR (2003) The effects of marine reserve protection on the trophic relationships of reef fishes on the Great Barrier Reef. Environ Conserv 30:200–208CrossRefGoogle Scholar
  34. Harriott VJ (2001) The sustainability of Queensland’s coral harvest fishery. Technical Report No. 40. CRC Reef Research Centre, TownsvilleGoogle Scholar
  35. Heatwole H, O’Neill P, Jones M, Preker M (1996) Long-term population trends of seabirds on the Swain Reefs, Great Barrier Reefs. Technical Report No. 12. CRC Reef Research Centre, TownsvilleGoogle Scholar
  36. Heupel MR, Knip DM, Simpfendorfer CA, Dulvy NK (2014) Sizing up the ecological role of sharks as predators. Mar Ecol Prog Ser 495:291–298CrossRefGoogle Scholar
  37. Hutchings PA, Kingsford MJ, Hoegh-Guldberg O (2008) The Great Barrier Reef: biology, environment and management. CSIRO, TownsvilleGoogle Scholar
  38. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638CrossRefPubMedGoogle Scholar
  39. Jouffray J-B, Nyström AV, Williams ID, Wedding LM, Kittinger JN, Williams GJ (2015) Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Phil Trans R Soc B 370:20130268CrossRefPubMedCentralGoogle Scholar
  40. Kingsford MJ (1992) Spatial and temporal variation in predation on reef fishes by coral trout (Plectropomus leopardus, Serranidae). Coral Reefs 11:193–198CrossRefGoogle Scholar
  41. Kulbicki M, Guillemot N, Amand M (2005) A general approach to length-weight relationships for New Caledonian lagoon fishes. Cybium 29:235–252Google Scholar
  42. Lefcheck JS (2015) PiecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579CrossRefGoogle Scholar
  43. Lefcheck JS, Duffy JE (2015) Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96:2973–2983CrossRefPubMedGoogle Scholar
  44. Lesnoff M, Lancelot R (2012) Aod: analysis of overdispersed data. R package version 1.3.
  45. Madin EMP, Gaines SD, Madin JS, Warner RR (2010) Fishing indirectly structures macroalgal assemblages by altering herbivore behavior. Am Nat 176:785–801CrossRefPubMedGoogle Scholar
  46. McCook LJ, Ayling T, Cappo M, Choat JH, Evans RD, De Freitas DM, Heupel M, Hughes TP, Jones GP, Mapstone B, Marsh H, Mills M, Molloy FJ, Pitcher CR, Pressey RL, Russ GR, Sutton S, Sweatman H, Tobin R, Wachenfeld DR, Williamson DH (2010) Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves. Proc Natl Acad Sci USA 107:18278–18285CrossRefPubMedPubMedCentralGoogle Scholar
  47. O’Leary JK, McClanahan TR (2010) Trophic cascades result in large-scale coralline algae loss through differential grazer effects. Ecology 91:3584–3597CrossRefPubMedGoogle Scholar
  48. Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488CrossRefPubMedGoogle Scholar
  49. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F Jr (1998) Fishing down marine food webs. Science 297:860–863CrossRefGoogle Scholar
  50. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2016) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-125.
  51. Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316CrossRefGoogle Scholar
  52. Polis GA, Sears ALW, Huxel GR, Strong DR, Maron J (2000) When is a trophic cascade a trophic cascade? Trends Ecol Evol 15:473–475CrossRefPubMedGoogle Scholar
  53. Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846CrossRefGoogle Scholar
  54. R Development Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  55. Randall JE, Head SM, Sanders APL (1978) Food habits of the giant humphead wrasse, Cheilinus undulatus (Labridae). Environ Biol Fish 3:235–238CrossRefGoogle Scholar
  56. Rasher DB, Hoey AS, Hay ME (2013) Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94:1347–1358CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ripple WJ, Larsen EJ, Renkin RA, Smith DW (2001) Trophic cascades among wolves, elk and aspen on Yellowstone National Park’s northern range. Biol Conserv 102:227–234CrossRefGoogle Scholar
  58. Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecol Lett 12:982–998CrossRefPubMedGoogle Scholar
  59. Rizzari JR, Bergseth BJ, Frisch AJ (2015) Impact of conservation areas on trophic interactions between apex predators and herbivores on coral reefs. Conserv Biol 29:418–429CrossRefPubMedGoogle Scholar
  60. Robbins WD, Hisano M, Connolly SR, Choat JH (2006) Ongoing collapse of coral-reef shark populations. Curr Biol 16:2314–2319CrossRefPubMedGoogle Scholar
  61. Roff G, Doropoulos C, Rogers A, Bozec Y-M, Krueck NC, Aurellado E, Priest M, Birrell C, Mumby PJ (2016) The ecological role of sharks on coral reefs. Trends Ecol Evol 31:395–407CrossRefPubMedGoogle Scholar
  62. Ruppert JLW, Travers MJ, Smith LL, Fortin M-J, Meekan MG (2013) Caught in the middle: combined impacts of shark removal on the fish communities of coral reefs. PLoS One 8:e74648CrossRefPubMedPubMedCentralGoogle Scholar
  63. Russ GR, Cheal AJ, Dolman AM, Emslie MJ, Evans RD, Miller I, Sweatman H, Williamson DH (2008) Rapid increase in fish numbers follows creation of the world’s largest marine reserve network. Curr Biol 18:R514–R515CrossRefPubMedGoogle Scholar
  64. Salomon AK, Gaichas SK, Shears NT, Smith JE, Madin EMP, Gaines SD (2010) Key features and context-dependence of fishery-induced trophic cascades. Conserv Biol 24:1523–1739CrossRefGoogle Scholar
  65. Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N, Sala E (2008) Baselines and degradation of coral reefs in the Northern Line Islands. PLoS One 3:e1548CrossRefPubMedPubMedCentralGoogle Scholar
  66. Scharf FS, Juanes F, Rountree RA (2000) Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic niche breadth. Mar Ecol Prog Ser 208:229–248CrossRefGoogle Scholar
  67. Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368CrossRefPubMedGoogle Scholar
  68. Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2002) A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett 5:785–791CrossRefGoogle Scholar
  69. Shurin JB, Seabloom EW (2005) The strength of trophic cascades across ecosystems: predictions from allometry and energetics. J Anim Ecol 74:1029–1038CrossRefGoogle Scholar
  70. Stier AC, Hein AM, Parravicini V, Kulbicki M (2014) Larval dispersal drives trophic structure across Pacific coral reefs. Nature Commun 5:1–6CrossRefGoogle Scholar
  71. Strong D (1992) Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73:747–754CrossRefGoogle Scholar
  72. Sweatman H, DeLean S, Syms C (2011) Assessing loss of coral cover on Australia’s Great Barrier Reef over two decades, with implications for longer-term trends. Coral Reefs 30:521–531CrossRefGoogle Scholar
  73. Taylor BM (2014) Drivers of protogynous sex change differ across spatial scales. Proc R Soc B 281:20132423CrossRefPubMedPubMedCentralGoogle Scholar
  74. Taylor S, Webley J, McInnes K (2012) 2010 statewide recreational fishing survey. State of Queensland, Department of Agriculture, Fisheries and ForestryGoogle Scholar
  75. Thompson RM, Hemberg M, Starzomski BM, Shurin JB (2007) Trophic levels and trophic tangles: the prevalence of omnivory in real food webs. Ecology 88:612–617CrossRefPubMedGoogle Scholar
  76. Venables WN, Ripley BD (2002) Modern statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  77. Vermeij MJA, DeBey H, Grimsditch G, Brown J, Obura D, DeLeon R, Sandin SA (2015) The negative effect of gardening damselfish (Stegastes planifrons) on coral health depends on predator abundance in a Caribbean MPA. Mar Ecol Prog Ser 528:289–296CrossRefGoogle Scholar
  78. Wetherbee BM, Crow GL, Lowe CG (1997) Distribution, reproduction and diet of the gray reef shark Carcharhinus amblyrhynchos in Hawaii. Mar Ecol Prog Ser 151:181–189CrossRefGoogle Scholar
  79. Williams ID, Baum JK, Heenan A, Hanson KM, Nadon MO, Brainard RE (2015b) Human, oceanographic and habitat drivers of central and western Pacific coral reef fish assemblages. PLoS One 10:e0120516CrossRefPubMedPubMedCentralGoogle Scholar
  80. Williams GJ, Gove JM, Eynaud Y, Zgliczynski BJ, Sandin SA (2015a) Local human impacts decouple natural biophysical relationships on Pacific coral reefs. Ecography 38:751–761CrossRefGoogle Scholar
  81. Wilson SK, Fisher R, Pratchett MS, Graham NAJ, Dulvy NK, Turner RA, Cakacaka A, Polunin NVC, Rushton SP (2008) Exploitation and habitat degradation as agents of change within coral reef fish communities Glob Change Biol 14:2796–2809Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jordan M. Casey
    • 1
    Email author
  • Andrew H. Baird
    • 1
  • Simon J. Brandl
    • 2
  • Mia O. Hoogenboom
    • 1
    • 3
  • Justin R. Rizzari
    • 1
    • 3
  • Ashley J. Frisch
    • 1
    • 4
  • Christopher E. Mirbach
    • 3
  • Sean R. Connolly
    • 1
    • 3
  1. 1.Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.Tennenbaum Marine Observatories NetworkSmithsonian Environmental Research CentreEdgewaterUSA
  3. 3.Marine Biology and Aquaculture, College of Science and EngineeringJames Cook UniversityTownsvilleAustralia
  4. 4.Reef HQ, Great Barrier Reef Marine Park AuthorityTownsvilleAustralia

Personalised recommendations