, Volume 183, Issue 2, pp 327–335 | Cite as

Environmental filtering of eudicot lineages underlies phylogenetic clustering in tropical South American flooded forests

  • Ana M. Aldana
  • Marcos B. Carlucci
  • Paul V. A. Fine
  • Pablo R. Stevenson
Highlighted Student Research


The phylogenetic community assembly approach has been used to elucidate the role of ecological and historical processes in shaping tropical tree communities. Recent studies have shown that stressful environments, such as seasonally dry, white-sand and flooded forests tend to be phylogenetically clustered, arguing for niche conservatism as the main driver for this pattern. Very few studies have attempted to identify the lineages that contribute to such assembly patterns. We aimed to improve our understanding of the assembly of flooded forest tree communities in Northern South America by asking the following questions: are seasonally flooded forests phylogenetically clustered? If so, which angiosperm lineages are over-represented in seasonally flooded forests? To assess our hypotheses, we investigated seasonally flooded and terra firme forests from the Magdalena, Orinoco and Amazon Basins, in Colombia. Our results show that, regardless of the river basin in which they are located, seasonally flooded forests of Northern South America tend to be phylogenetically clustered, which means that the more abundant taxa in these forests are more closely related to each other than expected by chance. Based on our alpha and beta phylodiversity analyses we interpret that eudicots are more likely to adapt to extreme environments such as seasonally flooded forests, which indicates the importance of environmental filtering in the assembly of the Neotropical flora.


Floodplains Várzea Igapó Phylobetadiversity Phylogenetic structure 



We thank Ángela Cano, Sasha Cárdenas, Luisa Fernanda Casas, Diego Felipe Correa, Mabel Suescún, María Natalia Umaña, Boris Villanueva for the information provided from the plots they established. AMA would like to thank James Richardson and Toby Pennington for helpful discussions on the results reported here and the Universidad de Los Andes for providing funding to visit the University of California, Berkeley where this research was envisioned. MBC received fellowships from CAPES-Brazil (Grants BEX7913/13-3 and PNPD #1454013). We are thankful to Dr. Ethan Householder and two anonymous reviewers who helped improve an earlier version of this manuscript.

Author contribution statement

PRS and AMA formulated the idea. AMA, MBC and PVAF developed the methodology. AMA and MBC wrote the manuscript; other authors provided advice and edited the manuscript.

Supplementary material

442_2016_3734_MOESM1_ESM.pdf (86 kb)
Supplementary material 1 (PDF 85 kb)
442_2016_3734_MOESM2_ESM.pdf (504 kb)
Supplementary material 2 (PDF 504 kb)
442_2016_3734_MOESM3_ESM.pdf (413 kb)
Supplementary material 3 (PDF 412 kb)
442_2016_3734_MOESM4_ESM.pdf (73 kb)
Supplementary material 4 (PDF 72 kb)


  1. Aldana AM, Beltrán M, Torres-Neira J, Stevenson PR (2008) Habitat Characterization and population density of brown spider monkeys (Ateles hybridus) in Magdalena Valley, Colombia. Neotrop Primates 15:46–50. doi: 10.1896/044.015.0203 CrossRefGoogle Scholar
  2. Antonelli A, Nylander JA, Persson C, Sanmartín I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci 106:9749–9754Google Scholar
  3. APG (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  4. Baldeck CA, Kembel SW, Harms KE et al (2016) Phylogenetic turnover along local environmental gradients in tropical forest communities. Oecologia. doi: 10.1007/s00442-016-3686-2 PubMedGoogle Scholar
  5. Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97:1296–1303. doi: 10.3732/ajb.0900346 CrossRefPubMedGoogle Scholar
  6. Cano A, Stevenson PR (2008) Diversidad y composición florística de tres tipos de bosque en la Estación Biológica Caparú, Vaupés. Colomb For 12:63. doi: 10.14483/udistrital.jour.colomb.for.2009.1.a06 CrossRefGoogle Scholar
  7. Carlucci MB, Seger GDS, Sheil D et al (2016) Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity. Ecography (Cop). doi: 10.1111/ecog.02104
  8. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. doi: 10.1111/j.1461-0248.2009.01314.x CrossRefPubMedGoogle Scholar
  9. Correa-Gómez DF, Stevenson PR (2010) Estructura y diversidad de bosques de los llanos orientales colombianos (Reserva Tomo Grande, Vichada). Revista Orinoquia 14:31–48Google Scholar
  10. Crisp MD, Cook LG (2012) Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol 196:681–694CrossRefPubMedGoogle Scholar
  11. Duarte LDS (2011) Phylogenetic habitat filtering influences forest nucleation in grasslands. Oikos 120:208–215. doi: 10.1111/j.1600-0706.2010.18898.x CrossRefGoogle Scholar
  12. Duarte LDS, Prieto PV, Pillar VD (2012) Assessing spatial and environmental drivers of phylogenetic structure in Brazilian Araucaria forests. Ecography (Cop) 35:952–960. doi: 10.1111/j.1600-0587.2011.07193.x CrossRefGoogle Scholar
  13. Duarte LDS, Both C, Debastiani VJ et al (2014) Climate effects on amphibian distributions depend on phylogenetic resolution and the biogeographical history of taxa. Glob Ecol Biogeogr 23:213–222. doi: 10.1111/geb.12089 CrossRefGoogle Scholar
  14. Eiserhardt WL, Svenning J-C, Baker WJ et al (2013) Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Sci Rep 3:1164. doi: 10.1038/srep01164 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630. doi: 10.1016/j.tree.2008.07.005 CrossRefPubMedGoogle Scholar
  16. Fine P (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Evol Syst 46:369–392. doi: 10.1146/annurev-ecolsys-112414-054102 CrossRefGoogle Scholar
  17. Fine PVA, Baraloto C (2016) Habitat endemism in white-sand forests: insights into the mechanisms of lineage diversification and community assembly of the Neotropical flora. Biotropica 48:24–33. doi: 10.1111/btp.12301 CrossRefGoogle Scholar
  18. Fine PVA, Kembel SW (2011) Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography (Cop) 34:552–565. doi: 10.1111/j.1600-0587.2010.06548.x CrossRefGoogle Scholar
  19. Fine PVA, Ree RH (2006) Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am Nat 168:796–804. doi: 10.1086/508635 CrossRefPubMedGoogle Scholar
  20. Gerhold P, Cahill JF, Winter M et al (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol 29:600–614. doi: 10.1111/1365-2435.12425 CrossRefGoogle Scholar
  21. Gonzalez-Caro S, Umana MN, Alvarez E et al (2014) Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. J Plant Ecol 7:145–153. doi: 10.1093/jpe/rtt076 CrossRefGoogle Scholar
  22. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  23. Guevara JE, Damasco G, Baraloto C et al (2016) Low phylogenetic beta diversity and geographic neo-endemism in Amazonian white-sand forests. Biotropica 48:34–46. doi: 10.1111/btp.12298 CrossRefGoogle Scholar
  24. Haugaasen T, Peres CA (2006) Floristic, edaphic and structural characteristics of flooded and unflooded forests in the lower Rio Purús region of central Amazonia, Brazil. Acta Amaz 36:25–36CrossRefGoogle Scholar
  25. Honorio-Coronado EN, Dexter KG, Pennington RT et al (2015) Phylogenetic diversity of Amazonian tree communities. Divers Distrib 21:1295–1307. doi: 10.1111/ddi.12357 CrossRefGoogle Scholar
  26. Hoorn C, Roddaz M, Dino R et al (2010) The Amazonian craton and its influence on past fluvial systems (Mesozoic-Cenozoic, Amazonia). In: Hoorn C, Wesselingh FP (eds) Amazonia: landscape and species evolution. Wiley-Blackwell Publishing Ltd., Oxford, pp 101–122Google Scholar
  27. Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12:949–960. doi: 10.1111/j.1461-0248.2009.01354.x CrossRefPubMedGoogle Scholar
  28. Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. doi: 10.1093/bioinformatics/btq166 CrossRefPubMedGoogle Scholar
  29. Kissling WD, Eiserhardt WL, Baker WJ et al (2012) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc Natl Acad Sci 109:7379–7384. doi: 10.1073/pnas.1120467109 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Losos J (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett. doi: 10.1111/j.1461-0248.2008.01229.x PubMedGoogle Scholar
  31. Maestri R, Luza AL, de Barros LD, Hartz SM, Ferrari A, de Freitas TRO, Duarte LDS (2016) Geographical variation of body size in sigmodontine rodents depends on both environment and phylogenetic composition of communities. J Biogeogr 43:1192–1202. doi: 10.1111/jbi.12718 CrossRefGoogle Scholar
  32. Montes C, Cardona A, Jaramillo C et al (2015) Middle Miocene closure of the Central American seaway. Science 348:226–229. doi: 10.1126/science.aaa2815 (80-)
  33. Mora A, Baby P, Roddaz M et al (2011) Tectonic history of the Andes and sub-andean zones: implications for the development of the Amazon drainage basin. In: Hoorn C, Wesselingh FP (eds) Amazonia: landscape and species evolution. Wiley-Blackwell Publishing Ltd., Oxford, pp 38–60CrossRefGoogle Scholar
  34. Oksanen J, Guillaume Blanchet F, Kindt R et al (2015) vegan: community ecology package. R package version 2.3-0Google Scholar
  35. Parmentier I, Malhi Y, Senterre B et al (2007) The odd man out? Might climate explain the lower tree α-diversity of African rain forests relative to Amazonian rain forests? J Ecol 95:1058–1071. doi: 10.1111/j.1365-2745.2007.01273.x CrossRefGoogle Scholar
  36. Parolin P (2008) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Ann Bot 103:359–376. doi: 10.1093/aob/mcn216 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Parolin P, Wittmann F (2010) Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems. AoB Plants 2010:plq003–plq003. doi: 10.1093/aobpla/plq003
  38. Pennington R (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev. doi: 10.1146/annurev.ecolsys.110308.120327
  39. Pérez-Valera E, Goberna M, Verdú M (2015) Phylogenetic structure of soil bacterial communities predicts ecosystem functioning. FEMS Microbiol Ecol 91:fiv031. doi: 10.1093/femsec/fiv031
  40. Pillar VD, Duarte LDS (2010) A framework for metacommunity analysis of phylogenetic structure. Ecol Lett 13:587–596. doi: 10.1111/j.1461-0248.2010.01456.x CrossRefPubMedGoogle Scholar
  41. Pizano C, García H (eds) (2014) El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, BogotáGoogle Scholar
  42. Prance G (1989) American tropical forests. Trop Rain For Ecosyst Ecol Stud. doi: 10.1016/B978-0-444-42755-7.50012-2 Google Scholar
  43. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  44. Stevens PF (2013) Angiosperm Phylogeny Website, version 13. http://www.mobot.org/MOBOT/research/APweb/. Accessed 2 Aug 2016
  45. Stevenson PR, Aldana AM (2008) Potential effects of ateline extinction and forest fragmentation on plant diversity and composition in the Western Orinoco Basin, Colombia. Int J Primatol 29:365–377. doi: 10.1007/s10764-007-9177-x CrossRefGoogle Scholar
  46. Stevenson PR, Suescún M, Quiñones M (2004) Characterization of forest types at the CIEM, Tinigua Park, Colombia. F Stud Fauna Flora La Macarena Colomb 14:1–20Google Scholar
  47. Swenson NG (2009) Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS One 4:e4390. doi: 10.1371/journal.pone.0004390 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Umaña MN, Norden N, Cano A, Stevenson PR (2012) Determinants of plant community assembly in a mosaic of landscape units in central Amazonia: ecological and phylogenetic perspectives. PLoS One 7:e45199. doi: 10.1371/journal.pone.0045199 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. doi: 10.1146/annurev.ecolsys.33.010802.150448 CrossRefGoogle Scholar
  50. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24:2098–2100CrossRefPubMedGoogle Scholar
  51. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539. doi: 10.1146/annurev.ecolsys.36.102803.095431 CrossRefGoogle Scholar
  52. Wittmann F, Schöngart J, Junk WJ (2011) Amazonian floodplain forests. Springer, DordrechtGoogle Scholar
  53. Wittmann F, Householder E, Piedade MTF et al (2013) Habitat specificity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography (Cop) 36:690–707. doi: 10.1111/j.1600-0587.2012.07723.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ana M. Aldana
    • 1
  • Marcos B. Carlucci
    • 2
    • 3
  • Paul V. A. Fine
    • 4
  • Pablo R. Stevenson
    • 1
  1. 1.Departamento de Ciencias BiológicasUniversidad de los AndesBogotá D.C.Colombia
  2. 2.Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.CAPES Foundation, Ministry of Education of BrazilBrasíliaBrazil
  4. 4.Department of Integrative BiologyUniversity and Jepson Herbaria, University of CaliforniaBerkeleyUSA

Personalised recommendations