Oecologia

, Volume 182, Issue 4, pp 1129–1140 | Cite as

Individual variation in functional response parameters is explained by body size but not by behavioural types in a poeciliid fish

  • Arne Schröder
  • Gregor Kalinkat
  • Robert Arlinghaus
Community ecology – original research

Abstract

Functional responses are per-capita feeding rate models whose parameters often scale with individual body size but the parameters may also be further influenced by behavioural traits consistently differing among individuals, i.e. behavioural types or animal personalities. Behavioural types may intrinsically lead to lower feeding rates when consistently shy, inactive and easily stressed individuals cannot identify or respond to risk-free environments or need less food due to lower metabolic rates linked to behaviour. To test how much variation in functional response parameters is explained by body size and how much by behavioural types, we estimated attack rate and handling time individually for differently sized female least killifish (Heterandria formosa) and repeatedly measured behavioural traits for each individual. We found that individual fish varied substantially in their attack rate and in their handling time. Behavioural traits were stable over time and varied consistently among individuals along two distinct personality axes. The individual variation in functional responses was explained solely by body size, and contrary to our expectations, not additionally by the existing behavioural types in exploration activity and coping style. While behavioural trait-dependent functional responses may offer a route to the understanding of the food web level consequences of behavioural types, our study is so far only the second one on this topic. Importantly, our results indicate in contrast to that previous study that behavioural types do not per se affect individual functional responses assessed in the absence of external biotic stressors.

Keywords

Allometric relationships Food webs Foraging Trait variation Population structure 

References

  1. Abrams PA (2010) Implications of flexible foraging for interspecific interactions: lessons from simple models. Funct Ecol 24:7–17. doi:10.1111/j.1365-2435.2009.01621.x CrossRefGoogle Scholar
  2. Ahrens RNM, Walters CJ, Christensen V (2012) Foraging arena theory. Fish Fish 13:41–59. doi:10.1111/j.1467-2979.2011.00432.x CrossRefGoogle Scholar
  3. Aljetlawi AA, Sparrevik E, Leonardsson K (2004) Prey–predator size-dependent functional response: derivation and rescaling to the real world. J Anim Ecol 73:239–252. doi:10.1111/j.0021-8790.2004.00800.x CrossRefGoogle Scholar
  4. Arditi R, Ginzburg LR (1989) Coupling in predator-prey dynamics: ratio-dependence. J Theor Biol 139:311–326. doi:10.1016/S0022-5193(89)80211-5 CrossRefGoogle Scholar
  5. Barrios-O’Neill D, Kelly R, Dick JTA, Ricciardi A, MacIsaac HJ, Emmerson MC (2016) On the context-dependent scaling of consumer feeding rates. Ecol Lett 19:668–678. doi:10.1111/ele.12605 CrossRefPubMedGoogle Scholar
  6. Bell AM (2005) Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus). J Evol Biol 18:464–473. doi:10.1111/j.1420-9101.2004.00817.x CrossRefPubMedGoogle Scholar
  7. Bell AM, Sih A (2007) Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecol Lett 10:828–834. doi:10.1111/j.1461-0248.2007.01081.x CrossRefPubMedGoogle Scholar
  8. Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 77:771–783. doi:10.1016/j.anbehav.2008.12.022 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berlow EL, Neutel A-M, Cohen JE, de Ruiter PC, Ebenman B, Emmerson M, Fox JW, Jansen VAA, Jones JI, Kokkoris GD, Logofet DO, McKane AJ, Montoya JM, Petchey O (2004) Interaction strengths in food webs: issues and opportunities. J Anim Ecol 73:585–598. doi:10.1111/j.0021-8790.2004.00833.x CrossRefGoogle Scholar
  10. Biro PA, Post JR (2008) Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proc Natl Acad Sci 105:2919–2922. doi:10.1073/pnas.0708159105 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Biro PA, Sampson P (2015) Fishing directly selects on growth rate via behaviour: implications of growth-selection that is independent of size. Proc R Soc B Biol Sci 282:20142283. doi:10.1098/rspb.2014.2283 CrossRefGoogle Scholar
  12. Biro PA, Stamps JA (2010) Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol Evol 25:653–659. doi:10.1016/j.tree.2010.08.003 CrossRefPubMedGoogle Scholar
  13. Blake CA, Gabor CR (2014) Effect of prey personality depends on predator species. Behav Ecol 25:871–877. doi:10.1093/beheco/aru041 CrossRefGoogle Scholar
  14. Bolker B (2016) emdbook: Ecological models and data in R. R package version 1.3.9Google Scholar
  15. Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192. doi:10.1016/j.tree.2011.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Boukal DS (2014) Trait- and size-based descriptions of trophic links in freshwater food webs: current status and perspectives. J Limnol. doi:10.4081/jlimnol.2014.826 Google Scholar
  17. Breck JE, Gitter MJ (1983) Effect of fish size on the reactive distance of bluegill (Lepomis macrochirus) sunfish. Can J Fish Aquat Sci 40:162–167. doi:10.1139/f83-026 CrossRefGoogle Scholar
  18. Brodin T (2009) Behavioral syndrome over the boundaries of life—carryovers from larvae to adult damselfly. Behav Ecol 20:30–37. doi:10.1093/beheco/arn111 CrossRefGoogle Scholar
  19. Brose U (2010) Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct Ecol 24:28–34. doi:10.1111/j.1365-2435.2009.01618.x CrossRefGoogle Scholar
  20. Brown C, Braithwaite VA (2004) Size matters: a test of boldness in eight populations of the poeciliid Brachyraphis episcopi. Anim Behav 68:1325–1329. doi:10.1016/j.anbehav.2004.04.004 CrossRefGoogle Scholar
  21. Budaev SV (1997) “Personality” in the guppy (Poecilia reticulata): a correlational study of exploratory behavior and social tendency. J Comp Psychol 111:399–411. doi:10.1037//0735-7036.111.4.399 CrossRefGoogle Scholar
  22. Budick SA, O’Malley DM (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J Exp Biol 203:2565–2579PubMedGoogle Scholar
  23. Burns JG (2008) The validity of three tests of temperament in guppies (Poecilia reticulata). J Comp Psychol 122:344–356. doi:10.1037/0735-7036.122.4.344 CrossRefPubMedGoogle Scholar
  24. Careau V, Thomas D, Humphries MM, Réale D (2008) Energy metabolism and animal personality. Oikos 117:641–653. doi:10.1111/j.0030-1299.2008.16513.x CrossRefGoogle Scholar
  25. Carter AJ, Feeney WE, Marshall HH, Cowlishaw G, Heinsohn R (2013) Animal personality: what are behavioural ecologists measuring? Biol Rev 88:465–475. doi:10.1111/brv.12007 CrossRefPubMedGoogle Scholar
  26. Conrad JL, Weinersmith KL, Brodin T, Saltz JB, Sih A (2011) Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. J Fish Biol 78:395–435. doi:10.1111/j.1095-8649.2010.02874.x CrossRefPubMedGoogle Scholar
  27. Core Team R (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  28. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  29. David M, Salignon M, Perrot-Minnot M-J (2014) Shaping the antipredator strategy: flexibility, consistency, and behavioral correlations under varying predation threat. Behav Ecol 25:1148–1156. doi:10.1093/beheco/aru101 CrossRefGoogle Scholar
  30. Davison A, Hinkley D (1997) Bootstrap methods and their application. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Dingemanse NJ, Dochtermann NA (2013) Quantifying individual variation in behaviour: mixed-effect modelling approaches. J Anim Ecol 82:39–54. doi:10.1111/1365-2656.12013 CrossRefPubMedGoogle Scholar
  32. Domenici P (2001) The scaling of locomotor performance in predator–prey encounters: from fish to killer whales. Comp Biochem Physiol A: Mol Integr Physiol 131:169–182. doi:10.1016/S1095-6433(01)00465-2 CrossRefGoogle Scholar
  33. Dubois F, Giraldeau L-A (2014) How the cascading effects of a single behavioral trait can generate personality. Ecol Evol 4:3038–3045. doi:10.1002/ece3.1157 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dyer JRG, Croft DP, Morrell LJ, Krause J (2009) Shoal composition determines foraging success in the guppy. Behav Ecol 20:165–171. doi:10.1093/beheco/arn129 CrossRefGoogle Scholar
  35. Englund G, Rydberg C, Leonardsson K (2008) Long-term variation of link strength in a simple benthic food web. J Anim Ecol 77:883–890. doi:10.1111/j.1365-2656.2008.01404.x CrossRefPubMedGoogle Scholar
  36. Higham TE (2007) The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance. Integr Comp Biol 47:82–95. doi:10.1093/icb/icm021 CrossRefPubMedGoogle Scholar
  37. Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 91:293–320CrossRefGoogle Scholar
  38. Jeschke JM, Kopp M, Tollrian R (2002) Predator functional responses: discriminating between handling and digesting prey. Ecol Monogr 72:95–112. doi:10.2307/3100087 CrossRefGoogle Scholar
  39. Kalinkat G (2014) Bringing animal personality research into the food web arena. J Anim Ecol 83:1245–1247. doi:10.1111/1365-2656.12284 CrossRefPubMedGoogle Scholar
  40. Kalinkat G, Schneider FD, Digel C, Guill C, Rall BC, Brose U (2013) Body masses, functional responses and predator-prey stability. Ecol Lett 16:1126–1134. doi:10.1111/ele.12147 CrossRefPubMedGoogle Scholar
  41. Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P (2013) Environmental stressors alter relationships between physiology and behaviour. Trends Ecol Evol 28:651–658. doi:10.1016/j.tree.2013.05.005 CrossRefPubMedGoogle Scholar
  42. Klefoth T, Skov C, Krause J, Arlinghaus R (2011) The role of ecological context and predation risk-stimuli in revealing the true picture about the genetic basis of boldness evolution in fish. Behav Ecol Sociobiol 66:547–559. doi:10.1007/s00265-011-1303-2 CrossRefGoogle Scholar
  43. Klefoth T, Pieterek T, Arlinghaus R (2013) Impacts of domestication on angling vulnerability of common carp, Cyprinus carpio: the role of learning, foraging behaviour and food preferences. Fish Manag Ecol 20:174–186. doi:10.1111/j.1365-2400.2012.00865.x CrossRefGoogle Scholar
  44. Kobler A, Klefoth T, Mehner T, Arlinghaus R (2009) Coexistence of behavioural types in an aquatic top predator: a response to resource limitation? Oecologia 161:837–847. doi:10.1007/s00442-009-1415-9 CrossRefPubMedGoogle Scholar
  45. Kondoh M (2007) Anti-predator defence and the complexity-stability relationship of food webs. Proc R Soc B Biol Sci 274:1617–1624. doi:10.1098/rspb.2007.0335 CrossRefGoogle Scholar
  46. Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, De Jong IC, Ruis MAW, Blokhuis HJ (1999) Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev 23:925–935. doi:10.1016/S0149-7634(99)00026-3 CrossRefPubMedGoogle Scholar
  47. Krause J, Loader SP, McDermott J, Ruxton GD (1998) Refuge use by fish as a function of body length-related metabolic expenditure and predation risks. Proc R Soc B Biol Sci 265:2373–2379. doi:10.1098/rspb.1998.0586 CrossRefGoogle Scholar
  48. Laskowski KL, Bell AM (2013) Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol Lett 16:746–753. doi:10.1111/ele.12105 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Magnhagen C, Hellström G, Borcherding J, Heynen M (2012) Boldness in two perch populations: long-term differences and the effect of predation pressure. J Anim Ecol 81:1311–1318. doi:10.1111/j.1365-2656.2012.02007.x CrossRefPubMedGoogle Scholar
  50. Mikheev VN, Andreev OA (1993) Two-phase exploration of a novel environment in the guppy, Poecilia reticulata. J Fish Biol 42:375–383. doi:10.1111/j.1095-8649.1993.tb00340.x CrossRefGoogle Scholar
  51. Mittelbach GG, Ballew NG, Kjelvik MK (2014) Fish behavioral types and their ecological consequences. Can J Fish Aquat Sci 71:927–944. doi:10.1139/cjfas-2013-0558 CrossRefGoogle Scholar
  52. Morozov A, Pasternak AF, Arashkevich EG (2013) Revisiting the role of individual variability in population persistence and stability. PLoS One. doi:10.1371/journal.pone.0070576 Google Scholar
  53. Murray GPD, Stillman RA, Gozlan RE, Britton JR (2013) Experimental predictions of the functional response of a freshwater fish. Ethology 119:751–761. doi:10.1111/eth.12117 CrossRefGoogle Scholar
  54. Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956. doi:10.1111/j.1469-185X.2010.00141.x PubMedGoogle Scholar
  55. Nakayama S, Fuiman LA (2010) Body size and vigilance mediate asymmetric interference competition for food in fish larvae. Behav Ecol 21:708–713. doi:10.1093/beheco/arq043 CrossRefGoogle Scholar
  56. Novak M (2010) Estimating interaction strengths in nature: experimental support for an observational approach. Ecology 91:2394–2405. doi:10.1890/09-0275.1 CrossRefPubMedGoogle Scholar
  57. Oaten A, Murdoch WW (1975) Switching, functional response, and stability in predator-prey systems. Am Nat 109:299–318CrossRefGoogle Scholar
  58. Oksanen L, Fretwell SD, Arruda J, Niemelä P (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118:240–261. doi:10.1086/283817 CrossRefGoogle Scholar
  59. Okuyama T (2008) Individual behavioral variation in predator–prey models. Ecol Res 23:665–671. doi:10.1007/s11284-007-0425-5 CrossRefGoogle Scholar
  60. Okuyama T (2012) Flexible components of functional responses. J Anim Ecol 81:185–189. doi:10.1111/j.1365-2656.2011.01876.x CrossRefPubMedGoogle Scholar
  61. Persson L, de Roos AM (2013) Symmetry breaking in ecological systems through different energy efficiencies of juveniles and adults. Ecology 94:1487–1498. doi:10.1890/12-1883.1 CrossRefPubMedGoogle Scholar
  62. Persson L, Leonardsson K, de Roos AM, Gyllenberg M, Christensen B (1998) Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theor Popul Biol 54:270–293. doi:10.1006/tpbi.1998.1380 CrossRefPubMedGoogle Scholar
  63. Pettorelli N, Hilborn A, Duncan C, Durant SM (2015) Individual variability: the missing component to our understanding of predator-prey interactions. In: Adv Ecol Res. doi:10.1016/bs.aecr.2015.01.001
  64. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  65. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-118Google Scholar
  66. Rall BC, Brose U, Hartvig M, Kalinkat G, Schwarzmüller F, Vucic-Pestic O, Petchey OL (2012) Universal temperature and body-mass scaling of feeding rates. Philos Trans R Soc B Biol Sci 367:2923–2934. doi:10.1098/rstb.2012.0242 CrossRefGoogle Scholar
  67. Réale D, Reader SM, Sol D, Bergeron P, Careau V, Montiglio P-O (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318. doi:10.1111/j.1469-185X.2007.00010.x CrossRefPubMedGoogle Scholar
  68. Réale D, Garant D, Humphries M, Bergeron P, Careau V, Montiglio P-O (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans R Soc B Biol Sci 365:4051–4063. doi:10.1098/rstb.2010.0208 CrossRefGoogle Scholar
  69. Rogers D (1972) Random search and insect population models. J Anim Ecol 41:369. doi:10.2307/3474 CrossRefGoogle Scholar
  70. Rudolf VHW, Lafferty KD (2011) Stage structure alters how complexity affects stability of ecological networks. Ecol Lett 14:75–79. doi:10.1111/j.1461-0248.2010.01558.x CrossRefPubMedGoogle Scholar
  71. Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioral syndromes: an integrative overview. Q Rev Biol 79:241–277. doi:10.1086/422893 CrossRefPubMedGoogle Scholar
  72. Sih A, Cote J, Evans M, Fogarty S, Pruitt J (2012) Ecological implications of behavioural syndromes. Ecol Lett 15:278–289. doi:10.1111/j.1461-0248.2011.01731.x CrossRefPubMedGoogle Scholar
  73. Smallegange IM, van der Meer J (2007) Interference from a game theoretical perspective: shore crabs suffer most from equal competitors. Behav Ecol 18:215–221. doi:10.1093/beheco/arl071 CrossRefGoogle Scholar
  74. Toscano BJ, Griffen BD (2014) Trait-mediated functional responses: predator behavioural type mediates prey consumption. J Anim Ecol 83:1469–1477. doi:10.1111/1365-2656.12236 CrossRefPubMedGoogle Scholar
  75. Toscano BJ, Gownaris NJ, Heerhartz SM, Monaco CJ (2016) Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia. doi: 10.1007/s00442-016-3648-8
  76. Tully T, Cassey P, Ferrière R (2005) Functional response: rigorous estimation and sensitivity to genetic variation in prey. Oikos 111:479–487. doi:10.1111/j.1600-0706.2005.14062.x CrossRefGoogle Scholar
  77. Valdovinos FS, Ramos-Jiliberto R, Garay-Narváez L, Urbani P, Dunne JA (2010) Consequences of adaptive behaviour for the structure and dynamics of food webs: adaptive behaviour in food webs. Ecol Lett 13:1546–1559. doi:10.1111/j.1461-0248.2010.01535.x CrossRefPubMedGoogle Scholar
  78. van Gils JA, van der Geest M, De Meulenaer B, Gillis H, Piersma T, Folmer EO (2015) Moving on with foraging theory: incorporating movement decisions into the functional response of a gregarious shorebird. J Anim Ecol 84:554–564. doi:10.1111/1365-2656.12301 CrossRefPubMedGoogle Scholar
  79. Wahlström E, Persson L, Diehl S, Byström P (2000) Size-dependent foraging efficiency, cannibalism and zooplankton community structure. Oecologia 123:138–148. doi:10.1007/s004420050999 CrossRefGoogle Scholar
  80. Ward AJW (2012) Social facilitation of exploration in mosquitofish (Gambusia holbrooki). Behav Ecol Sociobiol 66:223–230. doi:10.1007/s00265-011-1270-7 CrossRefGoogle Scholar
  81. Webb PW (1984) Body form, locomotion and foraging in aquatic vertebrates. Am Zool 24:107–120. doi:10.1093/icb/24.1.107 CrossRefGoogle Scholar
  82. Wennersten L, Forsman A (2012) Population-level consequences of polymorphism, plasticity and randomized phenotype switching: a review of predictions. Biol Rev 87:756–767. doi:10.1111/j.1469-185X.2012.00231.x CrossRefPubMedGoogle Scholar
  83. Wilson DS, Coleman K, Clark AB, Biederman L (1993) Shy-bold continuum in pumpkinseed sunfish (Lepomis gibbosus): an ecological study of a psychological trait. J Comp Psychol 107:250CrossRefGoogle Scholar
  84. Wolf M, Weissing FJ (2012) Animal personalities: consequences for ecology and evolution. Trends Ecol Evol 27:452–461. doi:10.1016/j.tree.2012.05.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department IV: Biology and Ecology of FishesLeibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
  2. 2.Division of Integrative Fisheries Management, Faculty of Life SciencesHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations