Imposing antecedent global change conditions rapidly alters plant community composition in a mixed-grass prairie

Abstract

Global change drivers are altering climatic and edaphic conditions of ecosystems across the globe, and we expect novel plant communities to become more common as a result. In the Colorado Front Range, compositional changes have occurred in the mixed-grass prairie plant community in conjunction with shifts in winter precipitation and atmospheric nitrogen (N) deposition. To test whether these environmental changes have been responsible for the observed plant community change, we conducted an in situ manipulative experiment in a mixed-grass meadow near Boulder, CO. We simulated historical conditions by reducing N availability (+500 g C m−2 year−1) and winter precipitation (with rainout shelters) for 2 years (2013–2014) and compared vegetation response to these treatments with that of ambient conditions. The site experienced an extreme precipitation event in autumn 2013 which allowed comparison of an exceptionally wet year with an average year. We measured pre-treatment species composition in 2012, and treatment responses in the spring and summer of 2013 and 2014. As predicted, simulating historical low N-winter dry conditions resulted in a plant community dominated by historically abundant species. Cool-season introduced species were significantly reduced in low N-winter dry plots, particularly the annual plants Bromus tectorum and Alyssum parviflorum. These same species responded strongly to the extreme precipitation event with large increases, while native grasses and forbs showed little change in productivity or composition under varying climatic or edaphic conditions. This work provides clear evidence linking on-going global change drivers to altered plant community composition in an otherwise relatively undisturbed grassland ecosystem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Baron JS, Rueth HM, Wolfe AM (2000) Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems 3:352–368. doi:10.1007/s100210000032

    CAS  Article  Google Scholar 

  2. Bates JD, Svejcar T, Miller RF, Angell RA (2006) The effects of precipitation timing on sagebrush steppe vegetation. J Arid Environ 64:670–697. doi:10.1016/j.jaridenv.2005.06.026

    Article  Google Scholar 

  3. Beals S, Hartley LM, Prevéy JS, Seastedt TR (2014) The effects of black-tailed prairie dogs on plant communities within a complex urban landscape: an ecological surprise? Ecology 95:1349–1359. doi:10.1890/13-0984.1

    Article  PubMed  Google Scholar 

  4. Blumenthal DM, Jordan NR, Russelle MP (2003) Soil carbon addition controls weeds and facilitates prairie restoration. Ecol Appl 13(3):605–615. doi:10.1890/1051-0761(2003)013[0605:SCACWA]2.0.CO;2

    Article  Google Scholar 

  5. Booth MS, Caldwell MM, Stark JM (2003) Overlapping resource use in three great basin species: implications for community invasibility and vegetation dynamics. J Ecol 91:36–48. doi:10.1046/j.1365-2745.2003.00739.x

    Article  Google Scholar 

  6. Bowman WD, Murgel J, Blett T, Porter E (2012) Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park. J Environ Manag 103:165–171. doi:10.1016/j.jenvman.2012.03.002

    CAS  Article  Google Scholar 

  7. Bromberg JE, Kumar S, Brown CS, Stohlgren TJ (2011) Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park. Invas Plant Sci Manag 4(2):173–182. doi:10.1614/IPSM-D-10-00022.1

    Article  Google Scholar 

  8. Busso CA, Fernandez OA, Fresnillo Fedorenko DE (1998) Dry weight production and partitioning in Medicago minima and Erodium cicutarium under water stress. Ann Bot Lond 82:217–227. doi:10.1006/anbo.1998.0667

    Article  Google Scholar 

  9. CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a subalpine plant community. PNAS USA 111:4916–4921. doi:10.1073/pnas.1323073111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Cherwin KL, Knapp AK (2011) Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia 169:845–852. doi:10.1007/s00442-011-2235-2

    Article  Google Scholar 

  11. Cherwin KL, Seastedt TR, Suding KN (2009) Effects of nutrient manipulations and grass removal on cover, species composition, and invasibility of a novel grassland community in Colorado. Restor Ecol 17:818–826. doi:10.1111/j.1526-100X.2008.00418.x

    Article  Google Scholar 

  12. Concilio AC, Loik ML, Belnap J (2013) Global change effects on Bromus tectorum L. (Poaceae) at its high-elevation range margin. Glob Change Biol 19:161–172. doi:10.1111/gcb.12032

    Article  Google Scholar 

  13. Concilio AC, Prevey JP, Omasta P, O’Connor J, Nippert JB, Seastedt TR (2015) Response of a mixed grass prairie to an extreme precipitation event. Ecosphere 6(10):172. doi:10.1890/ES15-00073.1

    Article  Google Scholar 

  14. Cox JA, Conran JG (1996) The effect of water stress on the life cycles of Erodium crinitum Carolin and Erodium cicutarium (L.) L’Herit. Ex Alton (Geraniaceae). Aust J Ecol 21(2):235–240. doi:10.1111/j.1442-9993.1996.tb00604.x

    Article  Google Scholar 

  15. Diez JM, D’Antoinio CM, Dukes JS et al (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257. doi:10.1890/110137

    Article  Google Scholar 

  16. Dise NB, Stevens CJ (2005) Nitrogen deposition and reduction of terrestrial biodiversity: evidence from temperate grasslands. Sci China Ser C 48:720–728. doi:10.1007/BF03187112

    CAS  Google Scholar 

  17. Evans SE, Byrne KM, Lauenroth WK, Burke IC (2011) Defining the limit to resistance in a drought-tolerant grassland: long-term severe drought significantly reduces the dominant species and increases ruderals. J Ecol 99:1500–1507. doi:10.1111/j.1365-2745.2011.01864.x

    Article  Google Scholar 

  18. Frank DA (2007) Drought effects on above- and belowground production of a grazed temperate grassland ecosystem. Oecologia 152:131–139. doi:10.1007/s00442-006-0632-8

    Article  PubMed  Google Scholar 

  19. Gutschick VP, BassiriRad, H (2003) Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phyol 160:21–42

    Article  Google Scholar 

  20. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638. doi:10.1126/science.1169640

    CAS  Article  PubMed  Google Scholar 

  21. Heitschmidt RK, Haferkamp MR, Karl MG, Hild AL (1999) Drought and grazing: I. Effects on quantity of forage produced. J Range Manag 52:440–446

    Article  Google Scholar 

  22. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374. doi:10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2

    Article  Google Scholar 

  23. Kay BL (1966) Fertilization of cheatgrass ranges in California. J Range Manag 19:217–220. doi:10.2307/3895651

    Article  Google Scholar 

  24. Knapp PA (1996) Cheatgrass (Bromus tectorum L) dominance in the Great Basin Desert. Glob Environ Chang 6(1):37–52. doi:10.1016/0959-3780(95)00112-3

    Article  Google Scholar 

  25. Knapp AK, Briggs JM, Koelliker JK (2001) Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems 4:19–28. doi:10.1007/s100210000057

    Article  Google Scholar 

  26. Knapp AK, Beier C, Briske DD et al (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811–821. doi:10.1641/B580908

    Article  Google Scholar 

  27. Lauenroth WK, Sala OE (1992) Long-term forage production of North American shortgrass steppe. Ecol Appl 2:397–403. doi:10.2307/1941874

    Article  Google Scholar 

  28. Lowe P, Lauenroth WK, Burke IC (2003) Effects of nitrogen availability on competition between Bromus tectorum and Bouteloua gracilis. Plant Ecol 167:247–254. doi:10.1023/A:1023934515420

    Article  Google Scholar 

  29. Lukas J, Barsugli J, Doesken N, Rangwala I, Wolter K (2014) Climate change in Colorado: a synthesis to support water resources management and adaptation. A report for the Colorado Water Conservation Board, Western Water Assessment

    Google Scholar 

  30. Mack RN (1981) Invasion of Bromus-tectorum L into western North-America—an ecological chronicle. Agro-Ecosystems 7:145–165. doi:10.1016/0304-3746(81)90027-5

    Article  Google Scholar 

  31. McGuire CR, Nufio CR, Bowers MD, Guralnick RP (2012) Elevation-dependent temperature trends in the rocky mountain front range: changes over a 56- and 20-year record. PLoS One 7:e44370. doi:10.1371/journal.pone.0044370

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Mealor BA, Cox S, Booth DT (2012) Postfire downy brome (Bromus tectorum) invasion at high elevations in Wyoming. Invas Plant Sci Manag 5(4):427–435. doi:10.1614/IPSM-D-11-00096.1

    Article  Google Scholar 

  33. Melgoza G, Nowak RS, Tausch RJ (1990) Soil water exploitation after fire: competition between Bromus tectorum (cheatgrass) and two native species. Oecologia 83:7–13. doi:10.1007/BF00324626

    Article  Google Scholar 

  34. Miller B, Ceballos G, Reading R (1994) The prairie dog and biotic diversity. Conserv Biol 8:677–681. doi:10.1046/j.1523-1739.1994.08030677.x

    Article  Google Scholar 

  35. Morgan JA, Milchunas DG, LeCain DR, West M, Mosier AR (2007) Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in short-grass steppe. PNAS USA 104:14724–14729. doi:10.1073/pnas.0703427104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Paláez DV, Busso CA, Elia OR, Fresnillo Fedorenko DE, Fernandez OA (1995) Demography and growth of Medicago minima and Erodium cicutarium: water stress effects. J Arid Environ 30:75–81. doi:10.1016/S0140-1963(95)80040-9

    Article  Google Scholar 

  37. Parton WJ, Ojima DS, Schimel DS (1994) Environmental change in grasslands: assessment using models. Clim Change 28:111–141. doi:10.1007/BF01094103

    CAS  Article  Google Scholar 

  38. Paschke MW, McLendon T, Redente EF (2000) Nitrogen availability and old-field succession in a shortgrass steppe. Ecosystems 3:144–158. doi:10.1007/s100210000016

    CAS  Article  Google Scholar 

  39. Pauchard A, Kueffer C, Dietz H et al (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7(9):479–486. doi:10.1890/080072

    Article  Google Scholar 

  40. Prevéy JS (2014) Precipitation change in a semi-arid grassland: plant community responses and management strategies. PhD dissertation, Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA

  41. Prevéy JS, Seastedt TR (2014) Seasonality of precipitation interacts with exotic species to alter composition and phenology of a semi-arid grassland. J Ecol 102:1549–1561. doi:10.1111/1365-2745.12320

    Article  Google Scholar 

  42. Prober SM, Thiele KR, Lunt ID et al (2005) Restoring ecological function in temperate grassy woodlands: manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns. J Appl Ecol 42:1073–1085. doi:10.1111/j.1365-2664.2005.01095.x

    CAS  Article  Google Scholar 

  43. Rao LE, Steers RJ, Allen EB (2011) Effects of natural and anthropogenic gradients on native and exotic winter annuals in a southern California Desert. Plant Ecol 212:1079–1089. doi:10.1007/s11258-010-9888-5

    Article  Google Scholar 

  44. Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988) Primary production of the central grassland region of the United States. Ecology 69:40–45. doi:10.2307/1943158

    Article  Google Scholar 

  45. Seastedt TR, Hobbs RJ, Suding KN (2008) Management of novel ecosystems: are novel approaches required? Front Ecol Environ 6(10):547–553. doi:10.1890/070046

    Article  Google Scholar 

  46. Seastedt TR, Hartley LM, Nippert JB (2013) Case study: ecosystem transformations along the Colorado Front Range: prairie dog interactions with multiple components of global environmental change. In: Hobbs R, Higgs ES, Hall CM (eds) Novel ecosystems: intervening in the new ecological world order. Wiley-Blackwell, Oxford, pp 142–149

    Google Scholar 

  47. Stevens CJ, Dise NB, Mountford O, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879. doi:10.1126/science.1094678

    CAS  Article  PubMed  Google Scholar 

  48. Suding KN, Hobbs RJ (2009) Threshold models in restoration and conservation: a developing framework. Trends Ecol Evol 24(5):271–279. doi:10.1016/j.tree.2008.11.012

    Article  PubMed  Google Scholar 

  49. [USDA] United States Department of Agriculture, Natural Resources Conservation Center (2001) Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx›

  50. Walker BH (1993) Rangeland ecology: understanding and managing change. Ambio 22:80–87

    Google Scholar 

  51. Wei-Ming H, Guo-Lei Y, Zhen-Kai S (2011) Nitrogen deposition enhances Bromus tectorum invasion biogeographic differences in growth and competitive ability between China and North America. Ecography 34:1059–1066. doi:10.1111/j.1600-0587.2011.06835.x

    Article  Google Scholar 

  52. Western Regional Climate Center [WRCC] (2016) Boulder, Colorado NCDC 1981–2010 Monthly Normals. http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?coboul

  53. Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439. doi:10.1111/j.1469-8137.2008.02488.x

    CAS  Article  PubMed  Google Scholar 

  54. Yahdjian L, Sala OE (2002) A rainout shelter design for intercepting different amounts of rainfall. Oecologia 133:95–101. doi:10.1007/s00442-002-1024-3

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from the National Science Foundation (DEB 1120390) to the University of Colorado. We thank Robin Reibold, Peter Omasta, Jeremy Arkin, Katharine Hurtado, Summer Sugg, Michael Mann, Oren Rabinowitz, Meredith Chedsey, Troy Ocheltree, and Graciela Orozco for help with field sampling and lab analysis.

Author contribution statement

TRS and JBN conceived and designed the experiments. ALC, SE, and KC performed the experiments. ALC analyzed the data and SE drew the figures. ALC, JBN, and TRS wrote the manuscript; other authors provided editorial advice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amy L. Concilio.

Additional information

Communicated by John Dwyer.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Concilio, A.L., Nippert, J.B., Ehrenfeucht, S. et al. Imposing antecedent global change conditions rapidly alters plant community composition in a mixed-grass prairie. Oecologia 182, 899–911 (2016). https://doi.org/10.1007/s00442-016-3684-4

Download citation

Keywords

  • Bromus tectorum
  • Erodium cicutarium
  • Nitrogen deposition
  • Novel ecosystem
  • Precipitation seasonality