Advertisement

Oecologia

, Volume 182, Issue 3, pp 899–911 | Cite as

Imposing antecedent global change conditions rapidly alters plant community composition in a mixed-grass prairie

  • Amy L. ConcilioEmail author
  • Jesse B. Nippert
  • Shivani Ehrenfeucht
  • Karie Cherwin
  • Timothy R. Seastedt
Global change ecology – original research

Abstract

Global change drivers are altering climatic and edaphic conditions of ecosystems across the globe, and we expect novel plant communities to become more common as a result. In the Colorado Front Range, compositional changes have occurred in the mixed-grass prairie plant community in conjunction with shifts in winter precipitation and atmospheric nitrogen (N) deposition. To test whether these environmental changes have been responsible for the observed plant community change, we conducted an in situ manipulative experiment in a mixed-grass meadow near Boulder, CO. We simulated historical conditions by reducing N availability (+500 g C m−2 year−1) and winter precipitation (with rainout shelters) for 2 years (2013–2014) and compared vegetation response to these treatments with that of ambient conditions. The site experienced an extreme precipitation event in autumn 2013 which allowed comparison of an exceptionally wet year with an average year. We measured pre-treatment species composition in 2012, and treatment responses in the spring and summer of 2013 and 2014. As predicted, simulating historical low N-winter dry conditions resulted in a plant community dominated by historically abundant species. Cool-season introduced species were significantly reduced in low N-winter dry plots, particularly the annual plants Bromus tectorum and Alyssum parviflorum. These same species responded strongly to the extreme precipitation event with large increases, while native grasses and forbs showed little change in productivity or composition under varying climatic or edaphic conditions. This work provides clear evidence linking on-going global change drivers to altered plant community composition in an otherwise relatively undisturbed grassland ecosystem.

Keywords

Bromus tectorum Erodiumcicutarium Nitrogen deposition Novel ecosystem Precipitation seasonality 

Notes

Acknowledgments

This research was funded by a grant from the National Science Foundation (DEB 1120390) to the University of Colorado. We thank Robin Reibold, Peter Omasta, Jeremy Arkin, Katharine Hurtado, Summer Sugg, Michael Mann, Oren Rabinowitz, Meredith Chedsey, Troy Ocheltree, and Graciela Orozco for help with field sampling and lab analysis.

Author contribution statement

TRS and JBN conceived and designed the experiments. ALC, SE, and KC performed the experiments. ALC analyzed the data and SE drew the figures. ALC, JBN, and TRS wrote the manuscript; other authors provided editorial advice.

Supplementary material

442_2016_3684_MOESM1_ESM.pdf (246 kb)
Supplementary material 1 (PDF 245 kb)
442_2016_3684_MOESM2_ESM.pdf (205 kb)
Supplementary material 2 (PDF 205 kb)
442_2016_3684_MOESM3_ESM.pdf (197 kb)
Supplementary material 3 (PDF 197 kb)

References

  1. Baron JS, Rueth HM, Wolfe AM (2000) Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems 3:352–368. doi: 10.1007/s100210000032 CrossRefGoogle Scholar
  2. Bates JD, Svejcar T, Miller RF, Angell RA (2006) The effects of precipitation timing on sagebrush steppe vegetation. J Arid Environ 64:670–697. doi: 10.1016/j.jaridenv.2005.06.026 CrossRefGoogle Scholar
  3. Beals S, Hartley LM, Prevéy JS, Seastedt TR (2014) The effects of black-tailed prairie dogs on plant communities within a complex urban landscape: an ecological surprise? Ecology 95:1349–1359. doi: 10.1890/13-0984.1 CrossRefPubMedGoogle Scholar
  4. Blumenthal DM, Jordan NR, Russelle MP (2003) Soil carbon addition controls weeds and facilitates prairie restoration. Ecol Appl 13(3):605–615. doi:10.1890/1051-0761(2003)013[0605:SCACWA]2.0.CO;2CrossRefGoogle Scholar
  5. Booth MS, Caldwell MM, Stark JM (2003) Overlapping resource use in three great basin species: implications for community invasibility and vegetation dynamics. J Ecol 91:36–48. doi: 10.1046/j.1365-2745.2003.00739.x CrossRefGoogle Scholar
  6. Bowman WD, Murgel J, Blett T, Porter E (2012) Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park. J Environ Manag 103:165–171. doi: 10.1016/j.jenvman.2012.03.002 CrossRefGoogle Scholar
  7. Bromberg JE, Kumar S, Brown CS, Stohlgren TJ (2011) Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park. Invas Plant Sci Manag 4(2):173–182. doi: 10.1614/IPSM-D-10-00022.1 CrossRefGoogle Scholar
  8. Busso CA, Fernandez OA, Fresnillo Fedorenko DE (1998) Dry weight production and partitioning in Medicago minima and Erodium cicutarium under water stress. Ann Bot Lond 82:217–227. doi: 10.1006/anbo.1998.0667 CrossRefGoogle Scholar
  9. CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a subalpine plant community. PNAS USA 111:4916–4921. doi: 10.1073/pnas.1323073111 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cherwin KL, Knapp AK (2011) Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia 169:845–852. doi: 10.1007/s00442-011-2235-2 CrossRefGoogle Scholar
  11. Cherwin KL, Seastedt TR, Suding KN (2009) Effects of nutrient manipulations and grass removal on cover, species composition, and invasibility of a novel grassland community in Colorado. Restor Ecol 17:818–826. doi: 10.1111/j.1526-100X.2008.00418.x CrossRefGoogle Scholar
  12. Concilio AC, Loik ML, Belnap J (2013) Global change effects on Bromus tectorum L. (Poaceae) at its high-elevation range margin. Glob Change Biol 19:161–172. doi: 10.1111/gcb.12032 CrossRefGoogle Scholar
  13. Concilio AC, Prevey JP, Omasta P, O’Connor J, Nippert JB, Seastedt TR (2015) Response of a mixed grass prairie to an extreme precipitation event. Ecosphere 6(10):172. doi: 10.1890/ES15-00073.1 CrossRefGoogle Scholar
  14. Cox JA, Conran JG (1996) The effect of water stress on the life cycles of Erodium crinitum Carolin and Erodium cicutarium (L.) L’Herit. Ex Alton (Geraniaceae). Aust J Ecol 21(2):235–240. doi: 10.1111/j.1442-9993.1996.tb00604.x CrossRefGoogle Scholar
  15. Diez JM, D’Antoinio CM, Dukes JS et al (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257. doi: 10.1890/110137 CrossRefGoogle Scholar
  16. Dise NB, Stevens CJ (2005) Nitrogen deposition and reduction of terrestrial biodiversity: evidence from temperate grasslands. Sci China Ser C 48:720–728. doi: 10.1007/BF03187112 Google Scholar
  17. Evans SE, Byrne KM, Lauenroth WK, Burke IC (2011) Defining the limit to resistance in a drought-tolerant grassland: long-term severe drought significantly reduces the dominant species and increases ruderals. J Ecol 99:1500–1507. doi: 10.1111/j.1365-2745.2011.01864.x CrossRefGoogle Scholar
  18. Frank DA (2007) Drought effects on above- and belowground production of a grazed temperate grassland ecosystem. Oecologia 152:131–139. doi: 10.1007/s00442-006-0632-8 CrossRefPubMedGoogle Scholar
  19. Gutschick VP, BassiriRad, H (2003) Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phyol 160:21–42CrossRefGoogle Scholar
  20. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638. doi: 10.1126/science.1169640 CrossRefPubMedGoogle Scholar
  21. Heitschmidt RK, Haferkamp MR, Karl MG, Hild AL (1999) Drought and grazing: I. Effects on quantity of forage produced. J Range Manag 52:440–446CrossRefGoogle Scholar
  22. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374. doi:10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2CrossRefGoogle Scholar
  23. Kay BL (1966) Fertilization of cheatgrass ranges in California. J Range Manag 19:217–220. doi: 10.2307/3895651 CrossRefGoogle Scholar
  24. Knapp PA (1996) Cheatgrass (Bromus tectorum L) dominance in the Great Basin Desert. Glob Environ Chang 6(1):37–52. doi: 10.1016/0959-3780(95)00112-3 CrossRefGoogle Scholar
  25. Knapp AK, Briggs JM, Koelliker JK (2001) Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems 4:19–28. doi: 10.1007/s100210000057 CrossRefGoogle Scholar
  26. Knapp AK, Beier C, Briske DD et al (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811–821. doi: 10.1641/B580908 CrossRefGoogle Scholar
  27. Lauenroth WK, Sala OE (1992) Long-term forage production of North American shortgrass steppe. Ecol Appl 2:397–403. doi: 10.2307/1941874 CrossRefGoogle Scholar
  28. Lowe P, Lauenroth WK, Burke IC (2003) Effects of nitrogen availability on competition between Bromus tectorum and Bouteloua gracilis. Plant Ecol 167:247–254. doi: 10.1023/A:1023934515420 CrossRefGoogle Scholar
  29. Lukas J, Barsugli J, Doesken N, Rangwala I, Wolter K (2014) Climate change in Colorado: a synthesis to support water resources management and adaptation. A report for the Colorado Water Conservation Board, Western Water AssessmentGoogle Scholar
  30. Mack RN (1981) Invasion of Bromus-tectorum L into western North-America—an ecological chronicle. Agro-Ecosystems 7:145–165. doi: 10.1016/0304-3746(81)90027-5 CrossRefGoogle Scholar
  31. McGuire CR, Nufio CR, Bowers MD, Guralnick RP (2012) Elevation-dependent temperature trends in the rocky mountain front range: changes over a 56- and 20-year record. PLoS One 7:e44370. doi: 10.1371/journal.pone.0044370 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mealor BA, Cox S, Booth DT (2012) Postfire downy brome (Bromus tectorum) invasion at high elevations in Wyoming. Invas Plant Sci Manag 5(4):427–435. doi: 10.1614/IPSM-D-11-00096.1 CrossRefGoogle Scholar
  33. Melgoza G, Nowak RS, Tausch RJ (1990) Soil water exploitation after fire: competition between Bromus tectorum (cheatgrass) and two native species. Oecologia 83:7–13. doi: 10.1007/BF00324626 CrossRefGoogle Scholar
  34. Miller B, Ceballos G, Reading R (1994) The prairie dog and biotic diversity. Conserv Biol 8:677–681. doi: 10.1046/j.1523-1739.1994.08030677.x CrossRefGoogle Scholar
  35. Morgan JA, Milchunas DG, LeCain DR, West M, Mosier AR (2007) Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in short-grass steppe. PNAS USA 104:14724–14729. doi: 10.1073/pnas.0703427104 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Paláez DV, Busso CA, Elia OR, Fresnillo Fedorenko DE, Fernandez OA (1995) Demography and growth of Medicago minima and Erodium cicutarium: water stress effects. J Arid Environ 30:75–81. doi: 10.1016/S0140-1963(95)80040-9 CrossRefGoogle Scholar
  37. Parton WJ, Ojima DS, Schimel DS (1994) Environmental change in grasslands: assessment using models. Clim Change 28:111–141. doi: 10.1007/BF01094103 CrossRefGoogle Scholar
  38. Paschke MW, McLendon T, Redente EF (2000) Nitrogen availability and old-field succession in a shortgrass steppe. Ecosystems 3:144–158. doi: 10.1007/s100210000016 CrossRefGoogle Scholar
  39. Pauchard A, Kueffer C, Dietz H et al (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7(9):479–486. doi: 10.1890/080072 CrossRefGoogle Scholar
  40. Prevéy JS (2014) Precipitation change in a semi-arid grassland: plant community responses and management strategies. PhD dissertation, Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USAGoogle Scholar
  41. Prevéy JS, Seastedt TR (2014) Seasonality of precipitation interacts with exotic species to alter composition and phenology of a semi-arid grassland. J Ecol 102:1549–1561. doi: 10.1111/1365-2745.12320 CrossRefGoogle Scholar
  42. Prober SM, Thiele KR, Lunt ID et al (2005) Restoring ecological function in temperate grassy woodlands: manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns. J Appl Ecol 42:1073–1085. doi: 10.1111/j.1365-2664.2005.01095.x CrossRefGoogle Scholar
  43. Rao LE, Steers RJ, Allen EB (2011) Effects of natural and anthropogenic gradients on native and exotic winter annuals in a southern California Desert. Plant Ecol 212:1079–1089. doi: 10.1007/s11258-010-9888-5 CrossRefGoogle Scholar
  44. Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988) Primary production of the central grassland region of the United States. Ecology 69:40–45. doi: 10.2307/1943158 CrossRefGoogle Scholar
  45. Seastedt TR, Hobbs RJ, Suding KN (2008) Management of novel ecosystems: are novel approaches required? Front Ecol Environ 6(10):547–553. doi: 10.1890/070046 CrossRefGoogle Scholar
  46. Seastedt TR, Hartley LM, Nippert JB (2013) Case study: ecosystem transformations along the Colorado Front Range: prairie dog interactions with multiple components of global environmental change. In: Hobbs R, Higgs ES, Hall CM (eds) Novel ecosystems: intervening in the new ecological world order. Wiley-Blackwell, Oxford, pp 142–149CrossRefGoogle Scholar
  47. Stevens CJ, Dise NB, Mountford O, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879. doi: 10.1126/science.1094678 CrossRefPubMedGoogle Scholar
  48. Suding KN, Hobbs RJ (2009) Threshold models in restoration and conservation: a developing framework. Trends Ecol Evol 24(5):271–279. doi: 10.1016/j.tree.2008.11.012 CrossRefPubMedGoogle Scholar
  49. [USDA] United States Department of Agriculture, Natural Resources Conservation Center (2001) Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx›
  50. Walker BH (1993) Rangeland ecology: understanding and managing change. Ambio 22:80–87Google Scholar
  51. Wei-Ming H, Guo-Lei Y, Zhen-Kai S (2011) Nitrogen deposition enhances Bromus tectorum invasion biogeographic differences in growth and competitive ability between China and North America. Ecography 34:1059–1066. doi: 10.1111/j.1600-0587.2011.06835.x CrossRefGoogle Scholar
  52. Western Regional Climate Center [WRCC] (2016) Boulder, Colorado NCDC 1981–2010 Monthly Normals. http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?coboul
  53. Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439. doi: 10.1111/j.1469-8137.2008.02488.x CrossRefPubMedGoogle Scholar
  54. Yahdjian L, Sala OE (2002) A rainout shelter design for intercepting different amounts of rainfall. Oecologia 133:95–101. doi: 10.1007/s00442-002-1024-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Amy L. Concilio
    • 1
    • 2
    Email author
  • Jesse B. Nippert
    • 3
  • Shivani Ehrenfeucht
    • 1
  • Karie Cherwin
    • 4
  • Timothy R. Seastedt
    • 1
  1. 1.Department of Ecology and Evolutionary Biology, Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA
  2. 2.Department of Political Science, Global Studies, Environmental Science and PolicySt Edward’s UniversityAustinUSA
  3. 3.Division of BiologyKansas State UniversityManhattanUSA
  4. 4.Department of BiologyColorado State UniversityFt. CollinsUSA

Personalised recommendations