Oecologia

, Volume 182, Issue 1, pp 129–137 | Cite as

Experimental evidence that sperm maturation drives protandry in an ectotherm

Behavioral ecology –original research

Abstract

Protandry, i.e., the earlier arrival to breeding areas of males than females, has attracted a lot of scientific attention. However, evidence for the evolutionary hypotheses of protandry is surprisingly scarce. Here, we experimentally manipulate the time of emergence from hibernation of males, relative to females, in the common lizard, Zootoca vivipara. We test whether the timing of emergence affects sperm maturation and mating success, to disentangle among proposed selective advantages of protandry. Our results experimentally demonstrate that the timing of emergence affects the date of sperm presence. Moreover, the degree of protandry affected whether males had sperm upon their first encounter with females, but it did not affect the probability of copulating. Mating occurred independent of male fertility and mating during infertility was least common in early emerging males. Early emergence from hibernation by males, relative to females, thus increases the male’s chance of fertilising eggs and later emergence from hibernation by females reduces the female’s probability of mating with infertile males. These results point to direct reproductive benefits of protandry in males and females, where earlier emergence is predicted to increase the male’s opportunities to inseminate mates, and later emergence reduces the female’s probability of copulating with infertile males. This suggests that protandry evolved due to the time required for sperm maturation after emergence from hibernation.

Keywords

Infertile copulations Moulting Sperm maturation Waiting cost hypothesis Zootoca vivipara 

References

  1. Alatalo RV, Lundberg A, Glynn C (1986) Female pied flycatchers choose territory quality and not male characteristics. Nature 323:152–153. doi:10.1038/323152a0 CrossRefGoogle Scholar
  2. Bauwens D, Verheyen RF (1985) The timing of reproduction in the lizard Lacerta vivipara: differences between individual females. J Herpetol 19:353–364. doi:10.2307/1564263 CrossRefGoogle Scholar
  3. Bauwens D, Van Damme R, Verheyen RF (1989) Synchronization of spring molting with the onset of mating behavior in male lizards, Lacerta vivipara. J Herpetol 23:89–91. doi:10.2307/1564326 CrossRefGoogle Scholar
  4. Bleu J, Le Galliard J-F, Meylan S, Massot M, Fitze PS (2011) Mating does not influence reproductive investment, in a viviparous lizard. J Exp Zool 315A:458–464. doi:10.1002/jez.693 CrossRefGoogle Scholar
  5. Breedveld MC, Fitze PS (2015) A matter of time: delayed mate encounter postpones mating window initiation and reduces the strength of female choosiness. Behav Ecol Sociobiol 69:533–541. doi:10.1007/s00265-014-1864-y CrossRefGoogle Scholar
  6. Breedveld MC, Fitze PS (2016) The timing and interval of mate encounter affects investment during mating. Biol J Linn Soc 118:610–617. doi:10.1111/bij.12747 CrossRefGoogle Scholar
  7. Bulmer MG (1983) Models for the evolution of protandry in insects. Theor Popul Biol 23:314–322. doi:10.1016/0040-5809(83)90021-7 CrossRefGoogle Scholar
  8. Courty Y, Dufaure JP (1980) Levels of testosterone, dihydrotesterone, and androstenedione in the plasma and testis of a lizard (Lacerta vivipara Jacquin) during the annual cycle. Gen Comp Endocrinol 42:325–333. doi:10.1016/0016-6480(80)90163-X CrossRefPubMedGoogle Scholar
  9. Depeiges A, Dacheux JL (1985) Acquisition of sperm motility and its maintenance during storage in the lizard, Lacerta vivipara. J Reprod Fertil 74:23–27. doi:10.1530/jrf.0.0740023 CrossRefPubMedGoogle Scholar
  10. Fitze PS, Le Galliard J-F, Federici P, Richard M, Clobert J (2005) Conflict over multiple-partner mating between males and females of the polygynandrous common lizards. Evolution 59:2451–2459. doi:10.1554/05-208.1 CrossRefPubMedGoogle Scholar
  11. Fitze PS, Cote J, Clobert J (2010) Mating order-dependent female mate choice in the polygynandrous common lizard Lacerta vivipara. Oecologia 162:331–341. doi:10.1007/s00442-009-1463-1 CrossRefPubMedGoogle Scholar
  12. Fitze PS, Gonzalez-Jimena V, San-Jose LM, Heulin B, Sinervo B (2014) Frequency-dependent sexual selection with respect to progeny survival is consistent with predictions from rock-paper-scissors dynamics in the European common lizard. Front Ecol Evolut 2:1–11. doi:10.3389/fevo.2014.00077 Google Scholar
  13. Forrest JRK (2014) Plant Size, sexual selection, and the evolution of protandry in dioecious plants. Am Nat 184:338–351. doi:10.1086/677295 CrossRefPubMedGoogle Scholar
  14. García-González F (2004) Infertile matings and sperm competition: the effect of “nonsperm representation” on intraspecific variation in sperm precedence patterns. Am Nat 164:457–472. doi:10.1086/423987 CrossRefPubMedGoogle Scholar
  15. Gavaud J (1991a) Cold entrainment of the annual cycle of ovarian activity in the lizard Lacerta vivipara: thermoperiodic rhythm versus hibernation. J Biol Rhythms 6:201–215. doi:10.1177/074873049100600302 CrossRefPubMedGoogle Scholar
  16. Gavaud J (1991b) Role of cryophase temperature and thermophase duration in thermoperiodic regulation of the testicular cycle in the lizard Lacerta vivipara. J Exp Zool 260:239–246. doi:10.1002/jez.1402600213 CrossRefGoogle Scholar
  17. Gomendio M, Malo AF, Garde J, Roldan ERS (2007) Sperm traits and male fertility in natural populations. Reproduction 134:19–29. doi:10.1530/REP-07-0143 CrossRefPubMedGoogle Scholar
  18. Gunnarsson B, Johnsson J (1990) Protandry and moulting to maturity in the spider Pityohyphantes phrygianus. Oikos 59:205–212. doi:10.2307/3545536 CrossRefGoogle Scholar
  19. Heulin B (1988) Observations sur l’organisation de la reproduction et sur les comportements sexuels et agonistiques chez Lacerta vivipara. Vie Milieu 38:177–187Google Scholar
  20. Horváthová T et al (2013) Length of activity season drives geographic variation in body size of a widely distributed lizard. Ecol Evol 2:2424–2442. doi:10.1002/ece3.613 CrossRefGoogle Scholar
  21. Huyghe K, San-Jose LM, Peñalver Alcázar M, Fitze PS (2013) An ecomorphological analysis of the determinants of mating success. Biol J Linn Soc 110:658–664. doi:10.1111/bij.12140 CrossRefGoogle Scholar
  22. Iwasa Y, Odendaal FJ, Murphy DD, Ehrlich PR, Launer AE (1983) Emergence patterns in male butterflies: a hypothesis and a test. Theor Popul Biol 23:363–379. doi:10.1016/0040-5809(83)90024-2 CrossRefGoogle Scholar
  23. Kokko H, Gunnarsson TG, Morrell LJ, Gill JA (2006) Why do female migratory birds arrive later than males? J Anim Ecol 75:1293–1303. doi:10.1111/j.1365-2656.2006.01151.x CrossRefPubMedGoogle Scholar
  24. Le Galliard J-F, Fitze PS, Ferrière R, Clobert J (2005) Sex ratio bias, male aggression, and population collapse in lizards. Proc Natl Acad Sci USA 102:18231–18236. doi:10.1073/pnas.0505172102 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lehmann GUC (2012) Weighing costs and benefits of mating in bushcrickets (Insecta: Orthoptera: Tettigoniidae), with an emphasis on nuptial gifts, protandry and mate density. Front Zool 9:19–30. doi:10.1186/1742-9994-9-19 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Licht P (1972) Environmental physiology of reptilian breeding cycles: role of temperature. Gen Comp Endocrinol Suppl 3:477–488. doi:10.1016/0016-6480(72)90178-5 CrossRefGoogle Scholar
  27. Massot M, Clobert J, Pilorge T, Lecomte J, Barbault R (1992) Density dependence in the common lizard: demographic consequences of a density manipulation. Ecology 73:1742–1756. doi:10.2307/1940026 CrossRefGoogle Scholar
  28. Michener GR (1983) Spring emergence schedules and vernal behavior of Richardson’s ground squirrels: why do males emerge from hibernation before females? Behav Ecol Sociobiol 14:29–38. doi:10.1007/BF00366653 CrossRefGoogle Scholar
  29. Møller AP (2004) Protandry, sexual selection and climate change. Glob Change Biol 10:2028–2035. doi:10.1111/j.1365-2486.2004.00874.x CrossRefGoogle Scholar
  30. Morbey YE, Ydenberg RC (2001) Protandrous arrival timing to breeding areas: a review. Ecol Lett 4:663–673. doi:10.1046/j.1461-0248.2001.00265.x CrossRefGoogle Scholar
  31. Morbey YE, Coppack T, Pulido F (2012) Adaptive hypotheses for protandry in arrival to breeding areas: a review of models and empirical tests. J Ornithol 153(Suppl 1):S207–S215. doi:10.1007/s10336-012-0854-y CrossRefGoogle Scholar
  32. Olsson M, Madsen T (1996) Costs of mating with infertile males selects for late emergence in female sand lizards (Lacerta agilis L.). Copeia 2:462–464. doi:10.2307/1446866 CrossRefGoogle Scholar
  33. Olsson M, Shine R (1997) Advantages of multiple matings to females: a test of the infertility hypothesis using lizards. Evolution 51:1684–1688. doi:10.2307/2411220 CrossRefGoogle Scholar
  34. Olsson M, Birkhead T, Shine R (1999) Can relaxed time constraints on sperm production eliminate protandry in an ectotherm? Biol J Linn Soc 66:159–170. doi:10.1111/j.1095-8312.1999.tb01881.x CrossRefGoogle Scholar
  35. Parker GA, Courtney SP (1983) Seasonal incidence: adaptive variation in the timing of life history stages. J Theor Biol 105:147–155. doi:10.1016/0022-5193(83)90430-7 CrossRefGoogle Scholar
  36. Peñalver Alcázar M, Aragón P, Breedveld MC, Fitze PS (2016) Microhabitat selection in the common lizard: implications of biotic interactions, age, sex, local adaptation and model transferability among populations. Ecol Evol 6:3594–3607. doi:10.1002/ece3.2138 CrossRefGoogle Scholar
  37. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  38. Rice WR, Gaines SD (1994) Extending nondirectional heterogeneity tests to evaluate simply ordered alternative hypotheses. Proc Natl Acad Sci USA 91:225–226. doi:10.1073/pnas.91.1.225 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Roig JM, Carretero MA, Llorente GA (2000) Reproductive cycle in a pyrenean oviparous population of the common lizard (Zootoca vivipara). Neth J Zool 50:15–27. doi:10.1163/156854200X00243 Google Scholar
  40. Rubolini D, Spina F, Saino N (2004) Protandry and sexual dimorphism in trans-Saharan migratory birds. Behav Ecol 15:592–601. doi:10.1093/beheco/arh048 CrossRefGoogle Scholar
  41. San-Jose LM, Peñalver-Alcázar M, Milá B, Gonzalez-Jimena V, Fitze PS (2014) Cumulative frequency-dependent selective episodes allow for rapid morph cycles and rock-paper-scissors dynamics in species with overlapping generations. Proc R Soc B 281:20140976. doi:10.1098/rspb.2014.0976 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Semlitsch RD, Scott DE, Pechmann JHK, Gibbons JW (1993) Phenotypic variation in the arrival time of breeding salamanders: individual repeatability and environmental influences. J Anim Ecol 62:334–340. doi:10.2307/5364 CrossRefGoogle Scholar
  43. Sheldon BC (1994) Male phenotype, fertility, and the pursuit of extra-pair copulations by female birds. Proc R Soc B 257:25–30. doi:10.1098/rspb.1994.0089 CrossRefGoogle Scholar
  44. Spottiswoode CN, Tøttrup AP, Coppack T (2006) Sexual selection predicts advancement of avian spring migration in response to climate change. Proc R Soc B 273:3023–3029. doi:10.1098/rspb.2006.3688 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Stanton ML (1994) Male-male competition during pollination in plant populations. Am Nat 144:S40–S68. doi:10.1086/285652 CrossRefGoogle Scholar
  46. Van Damme R, Bauwens D, Verheyen RF (1987) Thermoregulatory responses to environmental seasonality by the lizard Lacerta vivipara. Herpetologica 43:405–415Google Scholar
  47. Van Damme R, Bauwens D, Verheyen RF (1991) The thermal dependence of feeding behaviour, food consumption and gut-passage time in the lizard Lacerta vivipara Jacquin. Funct Ecol 5:507–517. doi:10.2307/2389633 CrossRefGoogle Scholar
  48. van Nuland GJ, Strijbosch H (1981) Annual rhythmics of Lacerta vivipara Jacquin and Lacerta agilis agilis L. (Sauria, Lacertidae) in the Netherlands. Amphibia Reptilia 2:83–95. doi:10.1163/156853881x00302 CrossRefGoogle Scholar
  49. Wang GY, Greenfield MD, Shelly TE (1990) Inter-male competition for high-quality host-plants: the evolution of protandry in a territorial grasshopper. Behav Ecol Sociobiol 27:191–198. doi:10.1007/BF00180303 CrossRefGoogle Scholar
  50. Wiklund C, Fagerström T (1977) Why do males emerge before females? Oecologia 31:153–158. doi:10.1007/BF00346917 CrossRefGoogle Scholar
  51. Zonneveld C (1996) Being big or emerging early? Polyandry and the trade-off between size and emergence in male butterflies. Am Nat 147:946–965. doi:10.1086/285887 CrossRefGoogle Scholar
  52. Zonneveld C, Metz JAJ (1991) Models on butterfly protandry: virgin females are at risk to die. Theor Popul Biol 40:308–321. doi:10.1016/0040-5809(91)90058-N CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales (MNCN-CSIC)MadridSpain
  2. 2.Instituto Pirenaico de Ecología (IPE-CSIC) JacaSpain
  3. 3.Department of Ecology and EvolutionUniversity of Lausanne, BiophoreLausanneSwitzerland
  4. 4.Fundación AraidZaragozaSpain

Personalised recommendations