Pollen limitation may be a common Allee effect in marine hydrophilous plants: implications for decline and recovery in seagrasses

Abstract

Pollen limitation may be an important factor in accelerated decline of sparse or fragmented populations. Little is known whether hydrophilous plants (pollen transport by water) suffer from an Allee effect due to pollen limitation or not. Hydrophilous pollination is a typical trait of marine angiosperms or seagrasses. Although seagrass flowers usually have high pollen production, floral densities are highly variable. We evaluated pollen limitation for intertidal populations of the seagrass Zostera noltei in The Netherlands and found a significant positive relation between flowering spathe density and fruit-set, which was suboptimal at <1200 flowering spathes m−2 (corresponding to <600 reproductive shoots m−2). A fragmented population had ≈35 % lower fruit-set at similar reproductive density than a continuous population. 75 % of all European populations studied over a large latitudinal gradient had flowering spathe densities below that required for optimal fruit-set, particularly in Southern countries. Literature review of the reproductive output of hydrophilous pollinated plants revealed that seed- or fruit-set of marine hydrophilous plants is generally low, as compared to hydrophilous freshwater and wind-pollinated plants. We conclude that pollen limitation as found in Z. noltei may be a common Allee effect for seagrasses, potentially accelerating decline and impairing recovery even after environmental conditions have improved substantially.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ackerman JD (2006) Sexual reproduction of seagrasses: pollination in the marine context. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, The Netherlands, pp 89–109

    Google Scholar 

  2. Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980

    Article  PubMed  Google Scholar 

  3. Alexandre A, Santos R, Serrão E (2005) Effects of clam harvesting on sexual reproduction of the seagrass Zostera noltii. Mar Ecol Progr Ser 298:115–122

    Article  Google Scholar 

  4. Alexandre A, Cabaçao Santos R, Serrão EA (2006) Timing and success of reproductive stages in the seagrass Zostera noltii. Aquat Bot 85:219–223

    Article  Google Scholar 

  5. Apostolaki ET, Marbà N, Holmer M, Karakassis I (2009) Fish farming enhances biomass and nutrient loss in Posidonia oceanica (L.) Delile. Estuar Coast Shelf Sci 81:390–400

    Article  Google Scholar 

  6. Ashman T-L, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  7. Auby I, Labourg P-J (1996) Seasonal dynamics of Zostera noltii Hornem. In the bay of Arcachon (France). J Sea Res 35:269–277

    Article  Google Scholar 

  8. Balestri E, Cinelli F (2003) Sexual reproductive success in Posidonia oceanica. Aquat Bot 75:21–32

    Article  Google Scholar 

  9. Bell SS, Robbins BD, Jensen SL (1999) Gap dynamics in a seagrass landscape. Ecosystems 2:493–504

    Article  Google Scholar 

  10. Brun FG, Pérez-Lloréns JL, Hernández I, Vergara JJ (2003) Patch distribution and within-patch dynamics of Zostera noltii Hornem. Properties at Rio San Pedro inlet (Cádiz, Spain). Bot Mar 46:513–524

    Article  Google Scholar 

  11. Buckel CA, Blanchette CA, Warner RR, Gaines SD (2012) Where a male is hard to find: consequences of male rarity in the surfgrass Phyllospadix torreyi. Mar Ecol Prog Ser 449:121–132

    Article  Google Scholar 

  12. Buia MC, Mazzella L (1991) Reproductive phenology of the Mediterranean seagrasses Posidonia oceanica (L.) Delile, Cymodocea nodosa (Ucria) Aschers., and Zostera noltii Hornem. Aquat Bot 40:343–362

    Article  Google Scholar 

  13. Burd M (1994) Bateman’s principole and plant production: the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139

    Article  Google Scholar 

  14. Cabaco S, Santos R (2012) Seagrass reproductive effort as an ecological indicator of disturbance. Ecol Indic 23:116–122

    Article  Google Scholar 

  15. Cabaço S, Machás S, Santos R (2009) Individual and population plasticity of the seagrass Zostera noltii along an intertidal gradient. Estuar Coastal Shelf Sci 82:301–308

    Article  Google Scholar 

  16. Cabaço S, Santos R, Sprung M (2012) Population dynamics and production of the seagrass Zostera noltii in colonizing versus established meadows. Mar Ecol 33:280–289

    Article  Google Scholar 

  17. Campey ML, Kendrick GA, Walker DI (2002) Interannual and small-scale spatial variability in sexual reproduction of the seagrasses Posidonia coriacea and Heterozostera tasmanica, southwestern Australia. Aquat Bot 74:287–297

    Article  Google Scholar 

  18. Carr J, D’Odorico P, McGlathery K, Wiberg P (2010) Stability and bistability of seagrass ecosystems in shallow coastal lagoons: role of feedbacks with sediment resuspension and light attenuation. J Geophys Res Biogeosci 115:G03011

    Article  Google Scholar 

  19. Churchill AC, Riner MI (1978) Anthesis and seed production in Zostera marina L. from Great South Bay, New York, U.S.A. Aquat Bot 4:83–93

    Article  Google Scholar 

  20. Coyer JA, Diekman OE, Serrão EA, Procaccini G, Milchakova N, Pearson GA, Stam WT, Olsen JL (2004) Population genetics of dwarf eelgrass Zostera noltii throughout its biogeographic range. Mar Ecol Progr Ser 281:51–62

    Article  Google Scholar 

  21. Davis HG, Taylor CM, Lambrinos JG, Strong DR (2004) Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proc Nat Acad Sci USA 101:13804–13807

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Duarte C (1989) Temporal biomass variability and production/biomass relationships of seagrass communities. Mar Ecol Prog Ser 51:269–276

    Article  Google Scholar 

  23. Duarte CM, Dennison WC, Orth RJ, Carruthers TJ (2008) The charisma of coastal ecosystems: addressing the imbalance. Estuar Coasts 31:233–238

    Article  Google Scholar 

  24. Eckert CG (2002) The loss of sex in clonal plants. Evol Ecol 15:501–520

    Article  Google Scholar 

  25. Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann Bot 103:1515–1527

    Article  PubMed  PubMed Central  Google Scholar 

  26. Govers LL, Bouma TJ, van der Ent E, Suykerbuyk W, Godet L, Asmus RM, van der Heide T, van Katwijk MM (2014) Feedbacks and local environmental settings affect persistence and recovery dynamics of a coastal ecosystem. In: The effects of biogeochemical stressors on seagrass ecosystems, PhDThesis, Radboud University Nijmegen, chapter 4: pp 54–69

  27. Hämmerli A, Reusch TBH (2003) Flexible mating: cross-pollination affects sex-expression in a marine clonal plant. J Evol Biol 16:1096–1105

    Article  PubMed  Google Scholar 

  28. Haynes RR (1997) Najadaceae. In: Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico, New York and Oxford. FNA Vol. 22 (http://www.eFloras.org). Accessed 5 Aug 2014

  29. Hesse E, Pannell JR (2011) Density-dependent pollen limitation and reproductive assurance in a wind-pollinated herb with contrasting sexual systems. J Ecol 99:1531–1539

    Article  Google Scholar 

  30. Holland JN, Chamberlain SA (2007) Ecological and evolutionary mechanisms for low seed:ovule ratios: need for a pluralistic approach? Ecology 88:706–715

    Article  PubMed  Google Scholar 

  31. Hootsmans MJM, Vermaat JE, van Vierssen W (1987) Seedbank development, germination and early seedling survival of two seagrass species from the Netherlands: Zostera marina L. and Zostera noltii Hornem. Aquat Bot 28:275–285

    Article  Google Scholar 

  32. Huang SQ, Guo YH, Robert GW, Shi YH, Sun K (2001) Mechanism of underwater pollination in Najas marina (Najadaceae). Aquat Bot 70:67–78

    Article  Google Scholar 

  33. Hughes AR, Stachowicz JJ (2009) Ecological impacts of genotypic diversity in the clonal seagrass Zostera marina. Ecology 90:1412–1419

    Article  PubMed  Google Scholar 

  34. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1132

    Google Scholar 

  35. Jensen HS, McGlathery KJ, Marino R, Howarth RW (1998) Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnol Oceanogr 43:799–810

    CAS  Article  Google Scholar 

  36. Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman TL (2005) Pollen limitation of plant reproduction: patterns and processes. Annu Rev Ecol Evol Syst 36:467–497

    Article  Google Scholar 

  37. Kuo J, Long WL, Coles RG (1993) Occurrence and fruit and seed biology of Halophila tricostata Greenway (Hydrocharitaceae). Mar Freshwr Res 44:43–57

    Google Scholar 

  38. Louters T, van der Berg JH, Mulder JPM (1998) Geomorphological changes of the Oosterschelde tidal system during and after the implementation of the delta project. J Coast Res 14:1134–1151

    Google Scholar 

  39. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  40. Ouborg NJ, Piquot Y, van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87:551–568

    Article  Google Scholar 

  41. Peralta G, Pérez-Lloréns Hernández I, Brun F, Vergara JJ, Bartual A, Gálvez JA, García CM (2000) Morphological and physiological differences between two morphotypes of Zostera noltii Hornem. from the south-western Iberian Peninsula. Helgol Mar Res 54:80–86

    Article  Google Scholar 

  42. Peralta G, Brun FG, Hernández I, Vergara JJ, Pérez-Llorens JL (2005) Morphometric variations as acclimation mechanisms in Zostera noltii beds. Estuar Coast Shelf Sci 64:347–356

    Article  Google Scholar 

  43. Qi L-Z, Li W-T, Zhang X-M, Nie M, Li Y (2014) Sexual reproduction and seed dispersal pattern of annual and perennial Zostera marina in a heterogeneous habitat. Wetlands Ecol Manage 22:671–682

    Article  Google Scholar 

  44. R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. Accessed 14 Nov 2014

  45. Reusch TBH (2001) Fitness-consequences of geitonogamous selfing in a clonal marine angiosperm (Zostera marina). J Evol Biol 14:129–138

    Article  Google Scholar 

  46. Reusch TBH (2003) Floral neighbourhoods in the sea: how floral density, opportunity for outcrossing and population fragmentation affect seed set in Zostera marina. J Ecol 91:610–615

    Article  Google Scholar 

  47. Ruggiero MV, Capone S, Pirozzi P, Reusch TBH, Procaccini G (2005) Mating system and clonal architecture: a comparative study in two marine angiosperms. Evol Ecol 19:487–499

    Article  Google Scholar 

  48. Scheffer M, Carpenter S, Foley JA et al (2001) Catastrophic shifts in ecosystems. Nat 413:591–596

    CAS  Article  Google Scholar 

  49. Shelton AO (2008) Skewed sex ratios, pollen limitation, and reproductive failure in the dioecious seagrass Phyllospadix. Ecology 89:3020–3029

    Article  Google Scholar 

  50. Silberhorn GM, Orth RJ, Moore KA (1983) Anthesis and seed production in Zostera marina L. (eelgrass) from Chesapeake Bay. Aquat Bot 15:133–144

    Article  Google Scholar 

  51. Silvertown J (2008) The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. Int J Plant Sci 169:157–168

    Article  Google Scholar 

  52. Smith NM, Walker DI (2002) Canopy structure and pollination biology of the seagrasses Posidonia australis and P. sinuosa (Posidoniaceae). Aquat Bot 74:57–70

    Article  Google Scholar 

  53. Suykerbuyk W, Bouma TJ, Van Der Heide T, Faust C, Govers LL, Giesen WBJT, De Jong DJ, Van Katwijk MM (2012) Suppressing antagonistic bioengineering feedbacks doubles restoration success. Ecol Appl 22:1224–1231

    Article  PubMed  Google Scholar 

  54. Suykerbuyk W, Bouma TJ, Govers LL, Giesen K, De Jong DJ, Herman P, Hendriks J, Van Katwijk MM (2015) Surviving in changing seascapes: sediment dynamics as bottleneck for long-term seagrass presence. Ecosystems 19:296–310

    Article  Google Scholar 

  55. Valdemarsen T, Wendelboe K, Egelund JT, Kristensen E, Flindt MR (2011) Burial of seeds and seedlings by the lugworm Arenicola marina hampers eelgrass (Zostera marina) recovery. JEMBE 410:45–52

    Article  Google Scholar 

  56. Van der Heide T, Smolders AJP, Rijkens BGA, van Nes EH, van Katwijk MM, Roelofs JGM (2008) Toxicity of reduced nitrogen in eelgrass Zostera marina is highly dependent on shoot density and pH. Oecologia 158:411–419

    Article  PubMed  Google Scholar 

  57. Van Katwijk MM, Thorhaug A, Marbà N et al (2016) Global analysis of seagrass restoration: The importance of large-scale planting. J Appl Ecol 53:567–578

  58. Van Tussenbroek BI, Muhlia Montero M (2013) Can floral consumption by fish shape traits of seagrass flowers? Evol Ecol 27:269–284

    Article  Google Scholar 

  59. Van Tussenbroek BI, Marquéz Guzmán J, Wong R (2009) Phenology of marine angiosperms (seagrasses): reproductive synchrony in the sea. In: Gamboa-deBuen A, Orozco-Segovia A, Cruz-Garcia F (eds) Functional approach to sexual plant reproduction. Research Signpost, India, pp 17–46

    Google Scholar 

  60. Van Tussenbroek BI, Muhlia Montero M, Wong R, Barba Santos MG, Márquez Guzmán J (2010) Pollen limitation in a dioecious seagrass: evidence from a field experiment. Mar Ecol Prog Ser 419:283–288

    Article  Google Scholar 

  61. Verduin JJ, Backhuis JO, Walker DI (2002) Estimates of pollen dispersal and capture within Amphibolis Antarctica (Labill.) Sonder and Aschers. Ex Aschers. Meadows. Bull Mar Sc 71:563–572

    Google Scholar 

  62. Vermaat JE, Verhagen FCA (1996) Seasonal variation in the intertidal seagrass Zostera noltii Hornem.: coupling demographic and physiological patterns. Aquat Bot 52:259–281

    Article  Google Scholar 

  63. Vermaat JE, Rollon RN, Lacap CDA, Billot C, Alberto F, Nacorda HME, Wiegman F, Terrados J (2004) Meadow fragmentation and reproductive output of the SE Asian seagrass Enhalus encoroides. J Sea Res 52:321–328

    Article  Google Scholar 

  64. Waycott M, Duarte CM, Carruthers TJB et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Weeks SC (1993) The effects of recurrent clonal formation on clonal invasion patterns and sexual persistence: a Monte Carlo simulation of the frozen niche-variation model. Am Nat 141:409–427

    CAS  Article  PubMed  Google Scholar 

  66. Wetsteyn LPMJ, Kromkamp JC (1994) Turbidity, nutrients and phytoplankton primary production in the Oosterschelde (The Netherlands) before, during and after a large-scale coastal engineering project (1980–1990). Hydrobiologia 282:61–78

    Article  Google Scholar 

  67. Williams S (1990) Experimental studies of Caribbean seagrass bed development. Ecol Monogr 60:449–469

    Article  Google Scholar 

  68. Williams S (1995) Surfgrass (Phyllospadix torreyi) reproduction: reproductive phenology, resource allocation and male rarity. Ecology 76:1953–1970

    Article  Google Scholar 

  69. Zipperle AM, Coyer JA, Reise K, Stamm WT, Olsen JL (2009a) Clonal architecture in an intertidal bed of the dwarf eelgrass Zostera noltii in the Northern Wadden Sea: persistence through extreme physical perturbation and the importance of a seed bank. Mar Biol 156:2139–2148

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zipperle AM, Coyer JA, Reise K, Stamm WT, Olsen JL (2009b) Evidence for persistent seed banks in dwarf eelgrass Zostera noltii in the German Wadden Sea. Mar Ecol Prog Ser 380:73–80

    Article  Google Scholar 

  71. Zipperle AM, Coyer JA, Reise K, Stamm WT, Olsen JL (2011) An evaluation of small-scale genetic diversity and mating system in Zostera noltii on an intertidal sandflat in the Wadden Sea. Ann Bot 107:127–133

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The first author (BIvT) received a grant for sabbatical period of Dirección General del Personal Académico of Universidad Nacional Autónoma de México. The second author (LS) was supported by the Netherlands Organisation for Scientific Research (No. 843.10.003). The authors are grateful to all students and volunteers who helped to collect samples as part of the European sampling study and to Mirjam Mooijman for help with laboratory analyses. We thank Wouter Suykerbuyk for his contribution to the artwork.

Author contribution statement

BIvT, MvK: conceived and designed and analyzed the section on pollen limitation. LS, TJB, MvK and others (FGB, GP, PGC, TFG, BO, MV, J-MG, FG, LG, JF, PK, RA): design, execution, data analysis of European sampling. BIvT, MvK, LS wrote the manuscript; other authors provided editorial advise

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. M. Soissons.

Additional information

Communicated by James Fourqurean.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Tussenbroek, B.I., Soissons, L.M., Bouma, T.J. et al. Pollen limitation may be a common Allee effect in marine hydrophilous plants: implications for decline and recovery in seagrasses. Oecologia 182, 595–609 (2016). https://doi.org/10.1007/s00442-016-3665-7

Download citation

Keywords

  • Abiotic pollination
  • Density dependence
  • Habitat fragmentation
  • Seed production
  • Zostera noltei