Oecologia

, Volume 182, Issue 2, pp 595–609 | Cite as

Pollen limitation may be a common Allee effect in marine hydrophilous plants: implications for decline and recovery in seagrasses

  • B. I. Van Tussenbroek
  • L. M. Soissons
  • T. J. Bouma
  • R. Asmus
  • I. Auby
  • F. G. Brun
  • P. G. Cardoso
  • N. Desroy
  • J. Fournier
  • F. Ganthy
  • J. M. Garmendia
  • L. Godet
  • T. F. Grilo
  • P. Kadel
  • B. Ondiviela
  • G. Peralta
  • M. Recio
  • M. Valle
  • T. Van der Heide
  • M. M. Van Katwijk
Conservation ecology – original research

Abstract

Pollen limitation may be an important factor in accelerated decline of sparse or fragmented populations. Little is known whether hydrophilous plants (pollen transport by water) suffer from an Allee effect due to pollen limitation or not. Hydrophilous pollination is a typical trait of marine angiosperms or seagrasses. Although seagrass flowers usually have high pollen production, floral densities are highly variable. We evaluated pollen limitation for intertidal populations of the seagrass Zostera noltei in The Netherlands and found a significant positive relation between flowering spathe density and fruit-set, which was suboptimal at <1200 flowering spathes m−2 (corresponding to <600 reproductive shoots m−2). A fragmented population had ≈35 % lower fruit-set at similar reproductive density than a continuous population. 75 % of all European populations studied over a large latitudinal gradient had flowering spathe densities below that required for optimal fruit-set, particularly in Southern countries. Literature review of the reproductive output of hydrophilous pollinated plants revealed that seed- or fruit-set of marine hydrophilous plants is generally low, as compared to hydrophilous freshwater and wind-pollinated plants. We conclude that pollen limitation as found in Z. noltei may be a common Allee effect for seagrasses, potentially accelerating decline and impairing recovery even after environmental conditions have improved substantially.

Keywords

Abiotic pollination Density dependence Habitat fragmentation Seed production Zostera noltei 

References

  1. Ackerman JD (2006) Sexual reproduction of seagrasses: pollination in the marine context. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, The Netherlands, pp 89–109Google Scholar
  2. Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980CrossRefPubMedGoogle Scholar
  3. Alexandre A, Santos R, Serrão E (2005) Effects of clam harvesting on sexual reproduction of the seagrass Zostera noltii. Mar Ecol Progr Ser 298:115–122CrossRefGoogle Scholar
  4. Alexandre A, Cabaçao Santos R, Serrão EA (2006) Timing and success of reproductive stages in the seagrass Zostera noltii. Aquat Bot 85:219–223CrossRefGoogle Scholar
  5. Apostolaki ET, Marbà N, Holmer M, Karakassis I (2009) Fish farming enhances biomass and nutrient loss in Posidonia oceanica (L.) Delile. Estuar Coast Shelf Sci 81:390–400CrossRefGoogle Scholar
  6. Ashman T-L, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421CrossRefGoogle Scholar
  7. Auby I, Labourg P-J (1996) Seasonal dynamics of Zostera noltii Hornem. In the bay of Arcachon (France). J Sea Res 35:269–277CrossRefGoogle Scholar
  8. Balestri E, Cinelli F (2003) Sexual reproductive success in Posidonia oceanica. Aquat Bot 75:21–32CrossRefGoogle Scholar
  9. Bell SS, Robbins BD, Jensen SL (1999) Gap dynamics in a seagrass landscape. Ecosystems 2:493–504CrossRefGoogle Scholar
  10. Brun FG, Pérez-Lloréns JL, Hernández I, Vergara JJ (2003) Patch distribution and within-patch dynamics of Zostera noltii Hornem. Properties at Rio San Pedro inlet (Cádiz, Spain). Bot Mar 46:513–524CrossRefGoogle Scholar
  11. Buckel CA, Blanchette CA, Warner RR, Gaines SD (2012) Where a male is hard to find: consequences of male rarity in the surfgrass Phyllospadix torreyi. Mar Ecol Prog Ser 449:121–132CrossRefGoogle Scholar
  12. Buia MC, Mazzella L (1991) Reproductive phenology of the Mediterranean seagrasses Posidonia oceanica (L.) Delile, Cymodocea nodosa (Ucria) Aschers., and Zostera noltii Hornem. Aquat Bot 40:343–362CrossRefGoogle Scholar
  13. Burd M (1994) Bateman’s principole and plant production: the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139CrossRefGoogle Scholar
  14. Cabaco S, Santos R (2012) Seagrass reproductive effort as an ecological indicator of disturbance. Ecol Indic 23:116–122CrossRefGoogle Scholar
  15. Cabaço S, Machás S, Santos R (2009) Individual and population plasticity of the seagrass Zostera noltii along an intertidal gradient. Estuar Coastal Shelf Sci 82:301–308CrossRefGoogle Scholar
  16. Cabaço S, Santos R, Sprung M (2012) Population dynamics and production of the seagrass Zostera noltii in colonizing versus established meadows. Mar Ecol 33:280–289CrossRefGoogle Scholar
  17. Campey ML, Kendrick GA, Walker DI (2002) Interannual and small-scale spatial variability in sexual reproduction of the seagrasses Posidonia coriacea and Heterozostera tasmanica, southwestern Australia. Aquat Bot 74:287–297CrossRefGoogle Scholar
  18. Carr J, D’Odorico P, McGlathery K, Wiberg P (2010) Stability and bistability of seagrass ecosystems in shallow coastal lagoons: role of feedbacks with sediment resuspension and light attenuation. J Geophys Res Biogeosci 115:G03011CrossRefGoogle Scholar
  19. Churchill AC, Riner MI (1978) Anthesis and seed production in Zostera marina L. from Great South Bay, New York, U.S.A. Aquat Bot 4:83–93CrossRefGoogle Scholar
  20. Coyer JA, Diekman OE, Serrão EA, Procaccini G, Milchakova N, Pearson GA, Stam WT, Olsen JL (2004) Population genetics of dwarf eelgrass Zostera noltii throughout its biogeographic range. Mar Ecol Progr Ser 281:51–62CrossRefGoogle Scholar
  21. Davis HG, Taylor CM, Lambrinos JG, Strong DR (2004) Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proc Nat Acad Sci USA 101:13804–13807CrossRefPubMedPubMedCentralGoogle Scholar
  22. Duarte C (1989) Temporal biomass variability and production/biomass relationships of seagrass communities. Mar Ecol Prog Ser 51:269–276CrossRefGoogle Scholar
  23. Duarte CM, Dennison WC, Orth RJ, Carruthers TJ (2008) The charisma of coastal ecosystems: addressing the imbalance. Estuar Coasts 31:233–238CrossRefGoogle Scholar
  24. Eckert CG (2002) The loss of sex in clonal plants. Evol Ecol 15:501–520CrossRefGoogle Scholar
  25. Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann Bot 103:1515–1527CrossRefPubMedPubMedCentralGoogle Scholar
  26. Govers LL, Bouma TJ, van der Ent E, Suykerbuyk W, Godet L, Asmus RM, van der Heide T, van Katwijk MM (2014) Feedbacks and local environmental settings affect persistence and recovery dynamics of a coastal ecosystem. In: The effects of biogeochemical stressors on seagrass ecosystems, PhDThesis, Radboud University Nijmegen, chapter 4: pp 54–69Google Scholar
  27. Hämmerli A, Reusch TBH (2003) Flexible mating: cross-pollination affects sex-expression in a marine clonal plant. J Evol Biol 16:1096–1105CrossRefPubMedGoogle Scholar
  28. Haynes RR (1997) Najadaceae. In: Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico, New York and Oxford. FNA Vol. 22 (http://www.eFloras.org). Accessed 5 Aug 2014
  29. Hesse E, Pannell JR (2011) Density-dependent pollen limitation and reproductive assurance in a wind-pollinated herb with contrasting sexual systems. J Ecol 99:1531–1539CrossRefGoogle Scholar
  30. Holland JN, Chamberlain SA (2007) Ecological and evolutionary mechanisms for low seed:ovule ratios: need for a pluralistic approach? Ecology 88:706–715CrossRefPubMedGoogle Scholar
  31. Hootsmans MJM, Vermaat JE, van Vierssen W (1987) Seedbank development, germination and early seedling survival of two seagrass species from the Netherlands: Zostera marina L. and Zostera noltii Hornem. Aquat Bot 28:275–285CrossRefGoogle Scholar
  32. Huang SQ, Guo YH, Robert GW, Shi YH, Sun K (2001) Mechanism of underwater pollination in Najas marina (Najadaceae). Aquat Bot 70:67–78CrossRefGoogle Scholar
  33. Hughes AR, Stachowicz JJ (2009) Ecological impacts of genotypic diversity in the clonal seagrass Zostera marina. Ecology 90:1412–1419CrossRefPubMedGoogle Scholar
  34. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1132Google Scholar
  35. Jensen HS, McGlathery KJ, Marino R, Howarth RW (1998) Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnol Oceanogr 43:799–810CrossRefGoogle Scholar
  36. Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman TL (2005) Pollen limitation of plant reproduction: patterns and processes. Annu Rev Ecol Evol Syst 36:467–497CrossRefGoogle Scholar
  37. Kuo J, Long WL, Coles RG (1993) Occurrence and fruit and seed biology of Halophila tricostata Greenway (Hydrocharitaceae). Mar Freshwr Res 44:43–57Google Scholar
  38. Louters T, van der Berg JH, Mulder JPM (1998) Geomorphological changes of the Oosterschelde tidal system during and after the implementation of the delta project. J Coast Res 14:1134–1151Google Scholar
  39. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996CrossRefGoogle Scholar
  40. Ouborg NJ, Piquot Y, van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87:551–568CrossRefGoogle Scholar
  41. Peralta G, Pérez-Lloréns Hernández I, Brun F, Vergara JJ, Bartual A, Gálvez JA, García CM (2000) Morphological and physiological differences between two morphotypes of Zostera noltii Hornem. from the south-western Iberian Peninsula. Helgol Mar Res 54:80–86CrossRefGoogle Scholar
  42. Peralta G, Brun FG, Hernández I, Vergara JJ, Pérez-Llorens JL (2005) Morphometric variations as acclimation mechanisms in Zostera noltii beds. Estuar Coast Shelf Sci 64:347–356CrossRefGoogle Scholar
  43. Qi L-Z, Li W-T, Zhang X-M, Nie M, Li Y (2014) Sexual reproduction and seed dispersal pattern of annual and perennial Zostera marina in a heterogeneous habitat. Wetlands Ecol Manage 22:671–682CrossRefGoogle Scholar
  44. R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. Accessed 14 Nov 2014
  45. Reusch TBH (2001) Fitness-consequences of geitonogamous selfing in a clonal marine angiosperm (Zostera marina). J Evol Biol 14:129–138CrossRefGoogle Scholar
  46. Reusch TBH (2003) Floral neighbourhoods in the sea: how floral density, opportunity for outcrossing and population fragmentation affect seed set in Zostera marina. J Ecol 91:610–615CrossRefGoogle Scholar
  47. Ruggiero MV, Capone S, Pirozzi P, Reusch TBH, Procaccini G (2005) Mating system and clonal architecture: a comparative study in two marine angiosperms. Evol Ecol 19:487–499CrossRefGoogle Scholar
  48. Scheffer M, Carpenter S, Foley JA et al (2001) Catastrophic shifts in ecosystems. Nat 413:591–596CrossRefGoogle Scholar
  49. Shelton AO (2008) Skewed sex ratios, pollen limitation, and reproductive failure in the dioecious seagrass Phyllospadix. Ecology 89:3020–3029CrossRefGoogle Scholar
  50. Silberhorn GM, Orth RJ, Moore KA (1983) Anthesis and seed production in Zostera marina L. (eelgrass) from Chesapeake Bay. Aquat Bot 15:133–144CrossRefGoogle Scholar
  51. Silvertown J (2008) The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. Int J Plant Sci 169:157–168CrossRefGoogle Scholar
  52. Smith NM, Walker DI (2002) Canopy structure and pollination biology of the seagrasses Posidonia australis and P. sinuosa (Posidoniaceae). Aquat Bot 74:57–70CrossRefGoogle Scholar
  53. Suykerbuyk W, Bouma TJ, Van Der Heide T, Faust C, Govers LL, Giesen WBJT, De Jong DJ, Van Katwijk MM (2012) Suppressing antagonistic bioengineering feedbacks doubles restoration success. Ecol Appl 22:1224–1231CrossRefPubMedGoogle Scholar
  54. Suykerbuyk W, Bouma TJ, Govers LL, Giesen K, De Jong DJ, Herman P, Hendriks J, Van Katwijk MM (2015) Surviving in changing seascapes: sediment dynamics as bottleneck for long-term seagrass presence. Ecosystems 19:296–310CrossRefGoogle Scholar
  55. Valdemarsen T, Wendelboe K, Egelund JT, Kristensen E, Flindt MR (2011) Burial of seeds and seedlings by the lugworm Arenicola marina hampers eelgrass (Zostera marina) recovery. JEMBE 410:45–52CrossRefGoogle Scholar
  56. Van der Heide T, Smolders AJP, Rijkens BGA, van Nes EH, van Katwijk MM, Roelofs JGM (2008) Toxicity of reduced nitrogen in eelgrass Zostera marina is highly dependent on shoot density and pH. Oecologia 158:411–419CrossRefPubMedGoogle Scholar
  57. Van Katwijk MM, Thorhaug A, Marbà N et al (2016) Global analysis of seagrass restoration: The importance of large-scale planting. J Appl Ecol 53:567–578Google Scholar
  58. Van Tussenbroek BI, Muhlia Montero M (2013) Can floral consumption by fish shape traits of seagrass flowers? Evol Ecol 27:269–284CrossRefGoogle Scholar
  59. Van Tussenbroek BI, Marquéz Guzmán J, Wong R (2009) Phenology of marine angiosperms (seagrasses): reproductive synchrony in the sea. In: Gamboa-deBuen A, Orozco-Segovia A, Cruz-Garcia F (eds) Functional approach to sexual plant reproduction. Research Signpost, India, pp 17–46Google Scholar
  60. Van Tussenbroek BI, Muhlia Montero M, Wong R, Barba Santos MG, Márquez Guzmán J (2010) Pollen limitation in a dioecious seagrass: evidence from a field experiment. Mar Ecol Prog Ser 419:283–288CrossRefGoogle Scholar
  61. Verduin JJ, Backhuis JO, Walker DI (2002) Estimates of pollen dispersal and capture within Amphibolis Antarctica (Labill.) Sonder and Aschers. Ex Aschers. Meadows. Bull Mar Sc 71:563–572Google Scholar
  62. Vermaat JE, Verhagen FCA (1996) Seasonal variation in the intertidal seagrass Zostera noltii Hornem.: coupling demographic and physiological patterns. Aquat Bot 52:259–281CrossRefGoogle Scholar
  63. Vermaat JE, Rollon RN, Lacap CDA, Billot C, Alberto F, Nacorda HME, Wiegman F, Terrados J (2004) Meadow fragmentation and reproductive output of the SE Asian seagrass Enhalus encoroides. J Sea Res 52:321–328CrossRefGoogle Scholar
  64. Waycott M, Duarte CM, Carruthers TJB et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381CrossRefPubMedPubMedCentralGoogle Scholar
  65. Weeks SC (1993) The effects of recurrent clonal formation on clonal invasion patterns and sexual persistence: a Monte Carlo simulation of the frozen niche-variation model. Am Nat 141:409–427CrossRefPubMedGoogle Scholar
  66. Wetsteyn LPMJ, Kromkamp JC (1994) Turbidity, nutrients and phytoplankton primary production in the Oosterschelde (The Netherlands) before, during and after a large-scale coastal engineering project (1980–1990). Hydrobiologia 282:61–78CrossRefGoogle Scholar
  67. Williams S (1990) Experimental studies of Caribbean seagrass bed development. Ecol Monogr 60:449–469CrossRefGoogle Scholar
  68. Williams S (1995) Surfgrass (Phyllospadix torreyi) reproduction: reproductive phenology, resource allocation and male rarity. Ecology 76:1953–1970CrossRefGoogle Scholar
  69. Zipperle AM, Coyer JA, Reise K, Stamm WT, Olsen JL (2009a) Clonal architecture in an intertidal bed of the dwarf eelgrass Zostera noltii in the Northern Wadden Sea: persistence through extreme physical perturbation and the importance of a seed bank. Mar Biol 156:2139–2148CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zipperle AM, Coyer JA, Reise K, Stamm WT, Olsen JL (2009b) Evidence for persistent seed banks in dwarf eelgrass Zostera noltii in the German Wadden Sea. Mar Ecol Prog Ser 380:73–80CrossRefGoogle Scholar
  71. Zipperle AM, Coyer JA, Reise K, Stamm WT, Olsen JL (2011) An evaluation of small-scale genetic diversity and mating system in Zostera noltii on an intertidal sandflat in the Wadden Sea. Ann Bot 107:127–133CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • B. I. Van Tussenbroek
    • 1
    • 2
  • L. M. Soissons
    • 3
  • T. J. Bouma
    • 3
  • R. Asmus
    • 4
  • I. Auby
    • 5
  • F. G. Brun
    • 6
  • P. G. Cardoso
    • 7
  • N. Desroy
    • 8
  • J. Fournier
    • 9
  • F. Ganthy
    • 5
  • J. M. Garmendia
    • 10
  • L. Godet
    • 11
  • T. F. Grilo
    • 12
  • P. Kadel
    • 4
  • B. Ondiviela
    • 13
  • G. Peralta
    • 6
  • M. Recio
    • 13
  • M. Valle
    • 10
    • 14
  • T. Van der Heide
    • 15
  • M. M. Van Katwijk
    • 1
  1. 1.Department of Environmental Science, Institute for Wetland and Water ResearchRadboud UniversityNijmegenThe Netherlands
  2. 2.Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoCancúnMexico
  3. 3.Department of Estuarine and Delta Systems (EDS), NIOZ Royal Netherlands Institute for Sea ResearchUtrecht UniversityYersekeThe Netherlands
  4. 4.Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Wadden Sea Station SyltListGermany
  5. 5.IFREMER-LER/ARArcachonFrance
  6. 6.Departamento de Biología, Área de Ecología, Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizCádizSpain
  7. 7.Department of Life Sciences, IMAR—Institute of Marine ResearchUniversity of CoimbraCoimbraPortugal
  8. 8.IFREMER-LER DinardDinardFrance
  9. 9.UMR 7208 BOREA, Station de Biologie Marine MNHNCNRSConcarneau CedexFrance
  10. 10.Marine Research DivisionAZTI-TecnaliaPasaiaSpain
  11. 11.CNRS, UMR 6554 LETG-Nantes GéolittomerUniversité de NantesNantes Cedex 3France
  12. 12.Department of Life Sciences, CFE—Centre for Functional EcologyUniversity of CoimbraCoimbraPortugal
  13. 13.Environmental Hydraulics Institute “IH Cantabria”, Parque Científico y Tecnológico de CantabriaUniversidad de CantabriaSantanderSpain
  14. 14.Central Research Department, Universidad Laica Eloy Alfaro de ManabíCiudadela UniversitariaMantaEcuador
  15. 15.Department of Aquatic Ecology and Environmental Biology, Institute for Wetland and Water ResearchRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations