Trophic cascades on the edge: fostering seagrass resilience via a novel pathway

Abstract

Despite widespread degradation, some coastal ecosystems display remarkable resilience. For seagrasses, a century-old paradigm has implicated macroalgal blooms stimulated by anthropogenic nutrient, loading as a primary driver of seagrass decline, yet relatively little attention has been given to drivers of seagrass resilience. In Elkhorn Slough, CA, an estuarine system characterized by extreme anthropogenic nutrient loading and macroalgal (Ulva spp.) blooms, seagrass (Zostera marina) beds have recovered concurrent with colonization of the estuary by top predators, sea otters (Enhydra lutris). Here, we follow up on the results of a previous experiment at the seagrass interior, showing how sea otters can generate a trophic cascade that promotes seagrass. We conducted an experiment and constructed structural equation models to determine how sea otters, through a trophic cascade, might affect the edge of seagrass beds where expansion occurs. We found that at the edge, sea otters promoted both seagrass and ephemeral macroalgae, with the latter contributing beneficial grazers to the seagrass. The surprising results that sea otters promote two potentially competing vegetation types, and a grazer assemblage at their boundary provides a mechanism by which seagrasses can expand in eutrophic environments, and contributes to a growing body of literature demonstrating that ephemeral macroalgae are not always negatively associated with seagrass. Our results highlight the potential for top predator recovery to enhance ecosystem resilience to anthropogenic alterations through several cascading mechanisms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alsterberg C, Eklöf JS, Gamfeldt L et al (2013) Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proc Natl Acad Sci USA 110:8603–8608

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Altieri AH, Bertness MD, Coverdale TC et al (2012) A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology 93:1402–1410

    Article  PubMed  Google Scholar 

  3. Baden S, Bostrom C, Tobiasson S et al (2010) Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: a broad-scale field experiment in the Baltic-Skagerrak area. Limnol Oceanogr 55:1435–1448

    CAS  Article  Google Scholar 

  4. Bernhardt JR, Leslie HM (2013) Resilience to climate change in coastal marine ecosystems. Ann Rev Mar Sci 5:371–392

    Article  PubMed  Google Scholar 

  5. Bertness MD, Coverdale TC (2013) An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod. Ecology 94:1937–1943

    Article  PubMed  Google Scholar 

  6. Boese BL, Alayan KE, Gooch EF, Robbins BD (2003) Desiccation index: a measure of damage caused by adverse aerial exposure on intertidal eelgrass (Zostera marina) in an Oregon (USA) estuary. Aquat Bot 76:329–337

    Article  Google Scholar 

  7. Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Bio Ecol 350:46–72

    Article  Google Scholar 

  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York

    Google Scholar 

  9. Byrnes JE, Reed DC, Cardinale BJ et al (2011) Climate-driven increases in storm frequency simplify kelp forest food webs. Glob Chang Biol 17:2513–2524

    Article  Google Scholar 

  10. Chapin T, Caffrey J, Jannasch H et al (2004) Nitrate sources and sinks in Elkhorn Slough, California: results from long-term continuous in situ nitrate analyzers. Estuaries 27:882–894

    CAS  Article  Google Scholar 

  11. Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–377

    Article  Google Scholar 

  12. Duffy JE, Hughes RA, Moksnes PO (2013) Ecology of seagrass communities. In: Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) Marine community ecology and conservation. Sinauer Associates, Sunderland, pp 271–297

    Google Scholar 

  13. Duffy JE, Reynolds PL, Boström C et al (2015) Biodiversity mediates top-down control in eelgrass ecosystems: a global comparative-experimental approach. Ecol Lett 18:696–705

    Article  PubMed  Google Scholar 

  14. Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet Earth. Science 333:301–306

    CAS  Article  PubMed  Google Scholar 

  15. Gao S, Shen S, Wang G et al (2011) PSI-driven cyclic electron flow allows intertidal macro-algae Ulva sp. (Chlorophyta) to survive in desiccated conditions. Plant Cell Physiol 52:885–893

    CAS  Article  PubMed  Google Scholar 

  16. Grant NE (2009) Changes in cover and use of Zostera marina habitats in Elkhorn Slough. California State University, Monterey Bay

    Google Scholar 

  17. Gunderson L (2000) Ecological resilience–in theory and application. Annu Rev Ecol Evol Syst 31:425–439

    Article  Google Scholar 

  18. Heck KL, Pennock JR, Valentine JF et al (2000) Effects of nutrient enrichment and small predator density on seagrass ecosystems: an experimental assessment. Limnol Oceanogr 45:1041–1057

    CAS  Article  Google Scholar 

  19. Heithaus MR, Alcoverro T, Arthur R et al (2014) Seagrasses in the age of sea turtle conservation and shark overfishing. Front Mar Sci 1:1–6

    Article  Google Scholar 

  20. Hessing-Lewis ML, Hacker SD, Menge BA, Rumrill SS (2011) Context-dependent eelgrass–macroalgae interactions along an estuarine gradient in the Pacific Northwest, USA. Estuaries Coasts 34:1169–1181

    Article  Google Scholar 

  21. Holling C (1973) Resilience and stability of ecological systems. Annu Rev Ecol Evol Syst 1–23

  22. Hughes AR, Bando KJ, Rodriguez LF et al (2004) Relative effects of grazers and nutrients on seagrasses: a meta-analysis approach. Mar Ecol Prog Ser 282:87–99

    Article  Google Scholar 

  23. Hughes BB, Haskins J, Wasson K, Watson E (2011) Identifying factors that influence expression of eutrophication in a central California estuary. Mar Ecol Prog Ser 439:31–43

    CAS  Article  Google Scholar 

  24. Hughes BB, Eby R, Van Dyke E et al (2013) Recovery of a top predator mediates negative eutrophic effects on seagrass. Proc Natl Acad Sci USA 110:15313–15318

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Hughes BB, Levey MD, Fountain MC et al (2015) Climate mediates hypoxic stress on fish diversity and nursery function at the land–sea interface. Proc Natl Acad Sci USA 112:8025–8030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Jackson JB, Kirby MX, Berger WH et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    CAS  Article  PubMed  Google Scholar 

  27. Jannasch HW, Coletti LJ, Johnson KS et al (2008) The Land/Ocean biogeochemical observatory: a robust networked mooring system for continuously monitoring complex biogeochemical cycles in estuaries. Limnol Oceanogr Methods 6:263–276

    CAS  Article  Google Scholar 

  28. Jones HP, Schmitz OJ (2009) Rapid recovery of damaged ecosystems

  29. Konar B, Estes J (2003) The stability of boundary regions between kelp beds and deforested areas. Ecology 84:174–185

    Article  Google Scholar 

  30. Letts M, Adeney W (1908) Pollution of estuaries and tidal waters. Append VI, Fifth Rep Comm R Comm Sew Disposal, His Majesty’s Station Off 1–555

  31. Lewis L, Anderson T (2012) Top-down control of epifauna by fishes enhances seagrass production. Ecology 93:2746–2757

    Article  PubMed  Google Scholar 

  32. Lidicker WZ (1999) Response of mammals to habitat edges: a landscape perspective. Landsc Ecol 14:333–343

    Article  Google Scholar 

  33. Lotze HK, Lenihan HS, Bourque BJ et al (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    CAS  Article  PubMed  Google Scholar 

  34. Lotze HK, Coll M, Magera AM et al (2011) Recovery of marine animal populations and ecosystems. Trends Ecol Evol 26:595–605

    Article  PubMed  Google Scholar 

  35. Lowry LF, Pearse JS (1973) Abalones and sea urchins in an area inhabited by sea otters. Mar Biol 23:213–219

    Article  Google Scholar 

  36. MacGinitie GE (1935) Ecological aspects of a California marine estuary. Am Midl Nat 16:629–765

    Article  Google Scholar 

  37. Macreadie PI, Hindell JS, Keough MJ et al (2010) Resource distribution influences positive edge effects in in a seagrass fish. Ecology 91:2013–2021

    Article  PubMed  Google Scholar 

  38. Moksnes P, Gullström M, Tryman K, Baden S (2008) Trophic cascades in a temperate seagrass community. Oikos 117:763–777

    Article  Google Scholar 

  39. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605

    Article  PubMed  Google Scholar 

  40. Nelson TA, Lee A (2001) Short communication A manipulative experiment demonstrates that blooms of the macroalga Ulvaria obscura can reduce eelgrass shoot density. Aquat Bot 71:149–154

    Article  Google Scholar 

  41. Oftedal OT, Ralls K, Tinker MT, Green A (2007) Nutritional constraints in the southern sea otter in the Monterey National Marine Sanctuary and a comparison to sea otter populations at San Nicolas Island, California and Glacier Bay, Alaska. Joint Final Report to Monterey Bay National Marine Sanctuary

  42. Olesen B, Sand-Jensen K (1994) Biomass-density patterns in the temperate seagrass Zostera marina. Mar Ecol Prog Ser 109:283–291

    Article  Google Scholar 

  43. Orth RJ, Carruthers TJB, Dennison WC et al (2006) A global crisis for seagrass ecosystems. Bioscience 56:987

    Article  Google Scholar 

  44. Palacios S, Zimmerman R (2007) Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar Ecol Prog Ser 344:1–13

    Article  Google Scholar 

  45. Reynolds PL, Paul Richardson J, Emmett Duffy J (2014) Field experimental evidence that grazers mediate transition between microalgal and seagrass dominance. Limnol Oceanogr 59:1053–1064

    Article  Google Scholar 

  46. Sand-Jensen K (1988) Minimum light requirements for growth in Ulva lactuca. Mar Ecol Prog Ser 50:187–193

    CAS  Article  Google Scholar 

  47. Silliman BR, Bertness MD (2002) A trophic cascade regulates salt marsh primary production. Proc Natl Acad Sci USA 99:10500–10505

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Silliman BR, McCoy MW, Angelini C et al (2013) Consumer fronts, global change, and runaway collapse in ecosystems. Annu Rev Ecol Evol Syst 44:503–538

    Article  Google Scholar 

  49. Thomsen MS, Wernberg T, Engelen AH et al (2012) A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLoS One 7:e28595

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature 367:363–365

    Article  Google Scholar 

  51. Underwood A (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University, Cambridge

    Google Scholar 

  52. Valentine J, Duffy J (2006) The central role of grazing in seagrass ecology. In: Larkum A, Orth R, Duarte C (eds) Seagrasses: biology, ecology, and conservation. Springer, p 463–501

  53. Valiela I, Mcclelland J, Hauxwell J et al (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118

    Article  Google Scholar 

  54. Waycott M, Duarte CM, Carruthers TJB et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Whalen MA, Duffy JE, Grace JB (2013) Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem. Ecology 94:510–520

    Article  PubMed  Google Scholar 

  56. Zimmerman RC (2010) Light and photosynthesis in seagrass meadows. In: Larkum A, Orth R, Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 303–321

    Google Scholar 

  57. Zimmerman RC, Reguzzonp JL, Alberte RS (1995) Eelgrass (Zostera marina L.) transplants in San Francisco Bay: role of light availability on metabolism, growth and survival. Aquat Bot 51:67–86

    Article  Google Scholar 

Download references

Acknowledgments

We thank the J. Trexler, two anonymous reviewers, and the following people who provided constructive comments for this manuscript: P. Raimondi, S. Williams, M. Carr, R. Kudela, J. Ruesink, M. Whalen, and J. Estes. We are indebted to the following volunteers for field and laboratory assistance: K. Beheshti, S. Abbey, and K. Davidson. This work was supported through a National Estuarine Research Reserve Graduate Research Fellowship, a Rebecca and Steve Sooy Graduate Fellowship in Marine Mammal Studies, and a grant from the University of California, Santa Cruz, Department of Ecology and Evolutionary Biology to B. B. Hughes; and a grant from the National Oceanic and Atmospheric Administration’s Estuarine Reserve Division to K. K. Hammerstrom, N. E. Grant, and K. Wasson.

Author contribution statement

BBH originally formulated the idea. BBH, RE, and KW conceived and designed the experiments. BBH, KKH, NEG, UH, and RE performed the experiments. BBH analyzed the data. BBH and KW wrote the manuscript; all authors provided editorial comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brent B. Hughes.

Additional information

Communicated by James Fourqurean.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1458 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hughes, B.B., Hammerstrom, K.K., Grant, N.E. et al. Trophic cascades on the edge: fostering seagrass resilience via a novel pathway. Oecologia 182, 231–241 (2016). https://doi.org/10.1007/s00442-016-3652-z

Download citation

Keywords

  • Eutrophication
  • Predator recovery
  • Ecosystem recovery
  • Trophic dynamics
  • Food web