, Volume 182, Issue 1, pp 231–241 | Cite as

Trophic cascades on the edge: fostering seagrass resilience via a novel pathway

  • Brent B. HughesEmail author
  • Kamille K. Hammerstrom
  • Nora E. Grant
  • Umi Hoshijima
  • Ron Eby
  • Kerstin Wasson
Community Ecology – original research


Despite widespread degradation, some coastal ecosystems display remarkable resilience. For seagrasses, a century-old paradigm has implicated macroalgal blooms stimulated by anthropogenic nutrient, loading as a primary driver of seagrass decline, yet relatively little attention has been given to drivers of seagrass resilience. In Elkhorn Slough, CA, an estuarine system characterized by extreme anthropogenic nutrient loading and macroalgal (Ulva spp.) blooms, seagrass (Zostera marina) beds have recovered concurrent with colonization of the estuary by top predators, sea otters (Enhydra lutris). Here, we follow up on the results of a previous experiment at the seagrass interior, showing how sea otters can generate a trophic cascade that promotes seagrass. We conducted an experiment and constructed structural equation models to determine how sea otters, through a trophic cascade, might affect the edge of seagrass beds where expansion occurs. We found that at the edge, sea otters promoted both seagrass and ephemeral macroalgae, with the latter contributing beneficial grazers to the seagrass. The surprising results that sea otters promote two potentially competing vegetation types, and a grazer assemblage at their boundary provides a mechanism by which seagrasses can expand in eutrophic environments, and contributes to a growing body of literature demonstrating that ephemeral macroalgae are not always negatively associated with seagrass. Our results highlight the potential for top predator recovery to enhance ecosystem resilience to anthropogenic alterations through several cascading mechanisms.


Eutrophication Predator recovery Ecosystem recovery Trophic dynamics Food web 



We thank the J. Trexler, two anonymous reviewers, and the following people who provided constructive comments for this manuscript: P. Raimondi, S. Williams, M. Carr, R. Kudela, J. Ruesink, M. Whalen, and J. Estes. We are indebted to the following volunteers for field and laboratory assistance: K. Beheshti, S. Abbey, and K. Davidson. This work was supported through a National Estuarine Research Reserve Graduate Research Fellowship, a Rebecca and Steve Sooy Graduate Fellowship in Marine Mammal Studies, and a grant from the University of California, Santa Cruz, Department of Ecology and Evolutionary Biology to B. B. Hughes; and a grant from the National Oceanic and Atmospheric Administration’s Estuarine Reserve Division to K. K. Hammerstrom, N. E. Grant, and K. Wasson.

Author contribution statement

BBH originally formulated the idea. BBH, RE, and KW conceived and designed the experiments. BBH, KKH, NEG, UH, and RE performed the experiments. BBH analyzed the data. BBH and KW wrote the manuscript; all authors provided editorial comments.

Supplementary material

442_2016_3652_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1458 kb)


  1. Alsterberg C, Eklöf JS, Gamfeldt L et al (2013) Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proc Natl Acad Sci USA 110:8603–8608CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altieri AH, Bertness MD, Coverdale TC et al (2012) A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology 93:1402–1410CrossRefPubMedGoogle Scholar
  3. Baden S, Bostrom C, Tobiasson S et al (2010) Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: a broad-scale field experiment in the Baltic-Skagerrak area. Limnol Oceanogr 55:1435–1448CrossRefGoogle Scholar
  4. Bernhardt JR, Leslie HM (2013) Resilience to climate change in coastal marine ecosystems. Ann Rev Mar Sci 5:371–392CrossRefPubMedGoogle Scholar
  5. Bertness MD, Coverdale TC (2013) An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod. Ecology 94:1937–1943CrossRefPubMedGoogle Scholar
  6. Boese BL, Alayan KE, Gooch EF, Robbins BD (2003) Desiccation index: a measure of damage caused by adverse aerial exposure on intertidal eelgrass (Zostera marina) in an Oregon (USA) estuary. Aquat Bot 76:329–337CrossRefGoogle Scholar
  7. Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Bio Ecol 350:46–72CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New YorkGoogle Scholar
  9. Byrnes JE, Reed DC, Cardinale BJ et al (2011) Climate-driven increases in storm frequency simplify kelp forest food webs. Glob Chang Biol 17:2513–2524CrossRefGoogle Scholar
  10. Chapin T, Caffrey J, Jannasch H et al (2004) Nitrate sources and sinks in Elkhorn Slough, California: results from long-term continuous in situ nitrate analyzers. Estuaries 27:882–894CrossRefGoogle Scholar
  11. Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–377CrossRefGoogle Scholar
  12. Duffy JE, Hughes RA, Moksnes PO (2013) Ecology of seagrass communities. In: Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) Marine community ecology and conservation. Sinauer Associates, Sunderland, pp 271–297Google Scholar
  13. Duffy JE, Reynolds PL, Boström C et al (2015) Biodiversity mediates top-down control in eelgrass ecosystems: a global comparative-experimental approach. Ecol Lett 18:696–705CrossRefPubMedGoogle Scholar
  14. Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet Earth. Science 333:301–306CrossRefPubMedGoogle Scholar
  15. Gao S, Shen S, Wang G et al (2011) PSI-driven cyclic electron flow allows intertidal macro-algae Ulva sp. (Chlorophyta) to survive in desiccated conditions. Plant Cell Physiol 52:885–893CrossRefPubMedGoogle Scholar
  16. Grant NE (2009) Changes in cover and use of Zostera marina habitats in Elkhorn Slough. California State University, Monterey BayGoogle Scholar
  17. Gunderson L (2000) Ecological resilience–in theory and application. Annu Rev Ecol Evol Syst 31:425–439CrossRefGoogle Scholar
  18. Heck KL, Pennock JR, Valentine JF et al (2000) Effects of nutrient enrichment and small predator density on seagrass ecosystems: an experimental assessment. Limnol Oceanogr 45:1041–1057CrossRefGoogle Scholar
  19. Heithaus MR, Alcoverro T, Arthur R et al (2014) Seagrasses in the age of sea turtle conservation and shark overfishing. Front Mar Sci 1:1–6CrossRefGoogle Scholar
  20. Hessing-Lewis ML, Hacker SD, Menge BA, Rumrill SS (2011) Context-dependent eelgrass–macroalgae interactions along an estuarine gradient in the Pacific Northwest, USA. Estuaries Coasts 34:1169–1181CrossRefGoogle Scholar
  21. Holling C (1973) Resilience and stability of ecological systems. Annu Rev Ecol Evol Syst 1–23Google Scholar
  22. Hughes AR, Bando KJ, Rodriguez LF et al (2004) Relative effects of grazers and nutrients on seagrasses: a meta-analysis approach. Mar Ecol Prog Ser 282:87–99CrossRefGoogle Scholar
  23. Hughes BB, Haskins J, Wasson K, Watson E (2011) Identifying factors that influence expression of eutrophication in a central California estuary. Mar Ecol Prog Ser 439:31–43CrossRefGoogle Scholar
  24. Hughes BB, Eby R, Van Dyke E et al (2013) Recovery of a top predator mediates negative eutrophic effects on seagrass. Proc Natl Acad Sci USA 110:15313–15318CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hughes BB, Levey MD, Fountain MC et al (2015) Climate mediates hypoxic stress on fish diversity and nursery function at the land–sea interface. Proc Natl Acad Sci USA 112:8025–8030CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jackson JB, Kirby MX, Berger WH et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637CrossRefPubMedGoogle Scholar
  27. Jannasch HW, Coletti LJ, Johnson KS et al (2008) The Land/Ocean biogeochemical observatory: a robust networked mooring system for continuously monitoring complex biogeochemical cycles in estuaries. Limnol Oceanogr Methods 6:263–276CrossRefGoogle Scholar
  28. Jones HP, Schmitz OJ (2009) Rapid recovery of damaged ecosystemsGoogle Scholar
  29. Konar B, Estes J (2003) The stability of boundary regions between kelp beds and deforested areas. Ecology 84:174–185CrossRefGoogle Scholar
  30. Letts M, Adeney W (1908) Pollution of estuaries and tidal waters. Append VI, Fifth Rep Comm R Comm Sew Disposal, His Majesty’s Station Off 1–555Google Scholar
  31. Lewis L, Anderson T (2012) Top-down control of epifauna by fishes enhances seagrass production. Ecology 93:2746–2757CrossRefPubMedGoogle Scholar
  32. Lidicker WZ (1999) Response of mammals to habitat edges: a landscape perspective. Landsc Ecol 14:333–343CrossRefGoogle Scholar
  33. Lotze HK, Lenihan HS, Bourque BJ et al (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809CrossRefPubMedGoogle Scholar
  34. Lotze HK, Coll M, Magera AM et al (2011) Recovery of marine animal populations and ecosystems. Trends Ecol Evol 26:595–605CrossRefPubMedGoogle Scholar
  35. Lowry LF, Pearse JS (1973) Abalones and sea urchins in an area inhabited by sea otters. Mar Biol 23:213–219CrossRefGoogle Scholar
  36. MacGinitie GE (1935) Ecological aspects of a California marine estuary. Am Midl Nat 16:629–765CrossRefGoogle Scholar
  37. Macreadie PI, Hindell JS, Keough MJ et al (2010) Resource distribution influences positive edge effects in in a seagrass fish. Ecology 91:2013–2021CrossRefPubMedGoogle Scholar
  38. Moksnes P, Gullström M, Tryman K, Baden S (2008) Trophic cascades in a temperate seagrass community. Oikos 117:763–777CrossRefGoogle Scholar
  39. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605CrossRefPubMedGoogle Scholar
  40. Nelson TA, Lee A (2001) Short communication A manipulative experiment demonstrates that blooms of the macroalga Ulvaria obscura can reduce eelgrass shoot density. Aquat Bot 71:149–154CrossRefGoogle Scholar
  41. Oftedal OT, Ralls K, Tinker MT, Green A (2007) Nutritional constraints in the southern sea otter in the Monterey National Marine Sanctuary and a comparison to sea otter populations at San Nicolas Island, California and Glacier Bay, Alaska. Joint Final Report to Monterey Bay National Marine SanctuaryGoogle Scholar
  42. Olesen B, Sand-Jensen K (1994) Biomass-density patterns in the temperate seagrass Zostera marina. Mar Ecol Prog Ser 109:283–291CrossRefGoogle Scholar
  43. Orth RJ, Carruthers TJB, Dennison WC et al (2006) A global crisis for seagrass ecosystems. Bioscience 56:987CrossRefGoogle Scholar
  44. Palacios S, Zimmerman R (2007) Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar Ecol Prog Ser 344:1–13CrossRefGoogle Scholar
  45. Reynolds PL, Paul Richardson J, Emmett Duffy J (2014) Field experimental evidence that grazers mediate transition between microalgal and seagrass dominance. Limnol Oceanogr 59:1053–1064CrossRefGoogle Scholar
  46. Sand-Jensen K (1988) Minimum light requirements for growth in Ulva lactuca. Mar Ecol Prog Ser 50:187–193CrossRefGoogle Scholar
  47. Silliman BR, Bertness MD (2002) A trophic cascade regulates salt marsh primary production. Proc Natl Acad Sci USA 99:10500–10505CrossRefPubMedPubMedCentralGoogle Scholar
  48. Silliman BR, McCoy MW, Angelini C et al (2013) Consumer fronts, global change, and runaway collapse in ecosystems. Annu Rev Ecol Evol Syst 44:503–538CrossRefGoogle Scholar
  49. Thomsen MS, Wernberg T, Engelen AH et al (2012) A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLoS One 7:e28595CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature 367:363–365CrossRefGoogle Scholar
  51. Underwood A (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University, CambridgeGoogle Scholar
  52. Valentine J, Duffy J (2006) The central role of grazing in seagrass ecology. In: Larkum A, Orth R, Duarte C (eds) Seagrasses: biology, ecology, and conservation. Springer, p 463–501Google Scholar
  53. Valiela I, Mcclelland J, Hauxwell J et al (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118CrossRefGoogle Scholar
  54. Waycott M, Duarte CM, Carruthers TJB et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381CrossRefPubMedPubMedCentralGoogle Scholar
  55. Whalen MA, Duffy JE, Grace JB (2013) Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem. Ecology 94:510–520CrossRefPubMedGoogle Scholar
  56. Zimmerman RC (2010) Light and photosynthesis in seagrass meadows. In: Larkum A, Orth R, Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 303–321Google Scholar
  57. Zimmerman RC, Reguzzonp JL, Alberte RS (1995) Eelgrass (Zostera marina L.) transplants in San Francisco Bay: role of light availability on metabolism, growth and survival. Aquat Bot 51:67–86CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Brent B. Hughes
    • 1
    • 2
    • 5
    Email author
  • Kamille K. Hammerstrom
    • 3
    • 5
  • Nora E. Grant
    • 3
    • 5
  • Umi Hoshijima
    • 2
    • 3
    • 5
  • Ron Eby
    • 4
    • 5
  • Kerstin Wasson
    • 2
    • 4
    • 5
  1. 1.Division of Marine Science and Conservation, Nicholas School of the EnvironmentDuke UniversityBeaufortUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzUSA
  3. 3.Moss Landing Marine LaboratoriesMoss LandingUSA
  4. 4.Department of Ecology Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraUSA
  5. 5.Elkhorn Slough National Estuarine Research ReserveWatsonvilleUSA

Personalised recommendations