Skip to main content
Log in

Long-term ungulate exclusion reduces fungal symbiont prevalence in native grasslands

  • Plant-microbe-animal interactions - original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

When symbionts are inherited by offspring, they can have substantial ecological and evolutionary consequences because they occur in all host life stages. Although natural frequencies of inherited symbionts are commonly <100 %, few studies investigate the ecological drivers of variation in symbiont prevalence. In plants, inherited fungal endophytes can improve resistance to herbivory, growth under drought, and competitive ability. We evaluated whether native ungulate herbivory increased the prevalence of a fungal endophyte in the common, native bunchgrass, Festuca campestris (rough fescue, Poaceae). We used large-scale (1 ha) and long-term (7–10 year) fencing treatments to exclude native ungulates and recorded shifts in endophyte prevalence at the scale of plant populations and for individual plants. We characterized the fungal endophyte in F. campestris, Epichloë species FcaTG-1 (F. campestris taxonomic group 1) for the first time. Under ungulate exclusion, endophyte prevalence was 19 % lower in plant populations, 25 % lower within plant individuals, and 39 % lower in offspring (seeds) than in ungulate-exposed controls. Population-level endophyte frequencies were also negatively correlated with soil moisture across geographic sites. Observations of high within-plant variability in symbiont prevalence are novel for the Epichloë species, and contribute to a small, but growing, literature that documents phenotypic plasticity in plant-endophyte symbiota. Altogether, we show that native ungulates can be an important driver of symbiont prevalence in native plant populations, even in the absence of evidence for direct mechanisms of mammal deterrence. Understanding the ecological controls on symbiont prevalence could help to predict future shifts in grasslands that are dominated by Epichloë host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afkhami ME, Rudgers JA (2008) Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses. Am Nat 172:405–416. doi:10.1086/589893

    Article  PubMed  Google Scholar 

  • Afkhami ME, McIntyre PJ, Strauss SY (2014) Mutualist-mediated effects on species’ range limits across large geographic scales. Ecol Lett 17:1265–1273. doi:10.1111/ele.12332

    Article  PubMed  Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood ratio test for branches: a fast, accurate and powerful alternative. Syst Biol 55:539–552. doi:10.1080/10635150600755453

    Article  PubMed  Google Scholar 

  • Bacon CW, White JF Jr (1994) Stains, media, and procedures for analyzing endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC, Boca Raton, pp 47–56

    Google Scholar 

  • Barkworth ME, Capels KM, Long S, Anderton LK, Piep MB (eds) (2007) Flora of north America volume 24: north of Mexico: Magnoliophyta: Commelinidae (in part): Poaceae, part 1. Oxford University Press, New York

    Google Scholar 

  • Bazely DR, Vicari M, Emmerich S, Filip L, Lin D, Inman A (1997) Interactions between herbivores and endophyte-infected Festuca rubra from the Scottish islands of St. Kilda, Benbecula and Rum. J Appl Ecol 34:847–860

    Article  Google Scholar 

  • Belesky DP, Bacon CW (2009) Tall fescue and associated mutualistic toxic fungal endophytes in agroecosystems. Toxin Rev 28:102–117. doi:10.1080/15569540903082143

    Article  CAS  Google Scholar 

  • Bibian A, Rudgers JA, Miller TEX (accepted) The role of host demographic storage in the ecological dynamics of heritable symbionts. Am Nat

  • Charlton ND, Craven KD, Afkhami ME, Hall BA, Ghimire SR, Young CA (2014) Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microb Ecol 90:276–289. doi:10.1111/1574-6941.12393

    Article  CAS  Google Scholar 

  • Cheplick GP (2007) Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environ Exp Bot 60:202–210

    Article  Google Scholar 

  • Cheplick GP, Faeth SH (2009) Ecology and evolution of grass-endophyte symbiosis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Chevenet F, Brun C, Baenuls AL, Jacq B, Christen R (2006) TREEDYN: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform 7:439

    Article  Google Scholar 

  • Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci USA 102:12465–12470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dereeper A et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. doi:10.1093/nar/gkn180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmi AA, West CP (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol 131:61–67

    Article  Google Scholar 

  • Emery SM, Thompson D, Rudgers JA (2010) Variation in endophyte symbiosis, herbivory and drought tolerance of Ammophila breviligulata populations in the great lakes region. Am Midl Nat 163:186–196

    Article  Google Scholar 

  • Garcia Parisi PA, Casas C, Gundel PE, Omacini M (2012) Consequences of grazing on the vertical transmission of a fungal Neotyphodium symbiont in an annual grass population. Austral Ecol 37:620–628. doi:10.1111/j.1442-9993.2011.02325.x

    Article  Google Scholar 

  • Gass TM, Binkley D (2011) Soil nutrient losses in an altered ecosystem are associated with native ungulate grazing. J Appl Ecol 48:952–960. doi:10.1111/j.1365-2664.2011.01996.x

    Article  CAS  Google Scholar 

  • Goff BM, Aiken GE, Witt WW, Sleugh BB, Burch PL (2012) Steer consumption and ergovaline recovery from in vitro digested residues of tall fescue seedheads. Crop Sci 52:1437–1440. doi:10.2135/cropsci2011.07.0378

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi:10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  • Hart SC, Stark JM, Davidson EA, Firestone MK (1994) Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds), Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, Soil Science Society of America, Madison, WI, pp 985–1018

  • Hobbs NT (1996) Modification of ecosystems by ungulates. J Wildl Manage 60:695–713. doi:10.2307/3802368

    Article  Google Scholar 

  • Iannone LJ, Cabral D, Schardl CL, Rossi MS (2009) Phylogenetic divergence, morphological and physiological differences distinguish a new Neotyphodium endophyte species in the grass Bromus auleticus from South America. Mycologia 101:340–350. doi:10.3852/08-156

    Article  CAS  PubMed  Google Scholar 

  • Iannone LJ, Irisarri JGN, Mc Cargo PD, Pérez LI, Gundel PE (2015) Occurrence of Epichloë fungal endophytes in the sheep-preferred grass Hordeum comosum from Patagonia. J Arid Environ 115:19–26

    Article  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215. doi:10.1126/science.1188235

    Article  CAS  PubMed  Google Scholar 

  • Karban R (2011) The ecology and evolution of induced resistance against herbivores. Funct Ecol 25:339–347. doi:10.1111/j.1365-2435.2010.01789.x

    Article  Google Scholar 

  • Koh S, Hik DS (2007) Herbivory mediates grass–endophyte relationships. Ecology 88:2752–2757

    Article  PubMed  Google Scholar 

  • Kucht S, Grob J, Hussein Y, Grothe T, Keller U, Basar S, Konig WA, Steiner U, Leister E (2004) Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides. Planta 219:619–625

    Article  CAS  PubMed  Google Scholar 

  • Leuchtmann A, Bacon CW, Schardl CL, White JF Jr, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 106:202–215. doi:10.3852/106.2.202

    Article  CAS  PubMed  Google Scholar 

  • Lewis GC, Ravel C, Naffaa W, Astier C, Charmet G (1997) Occurrence of Acremonium endophytes in wild populations of Lolium spp. in European countries and a relationship between level of infection and climate in France. Ann Appl Biol 130:227–238

    Article  Google Scholar 

  • Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320. doi:10.1111/j.2007.0030-1299.15973.x

    Article  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Margulis L (1996) Archaeal–eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA 93:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maron JL, Pearson DE, Potter T, Ortega YK (2012) Seed size and provenance mediate the joint effects of disturbance and seed predation on community assembly. J Ecol 100:1492–1500. doi:10.1111/j.1365-2745.2012.02027.x

    Article  Google Scholar 

  • McInenly LE, Merrill EH, Cahill JF, Juma NG (2010) Festuca campestris alters root morphology and growth in response to simulated grazing and nitrogen form. Funct Ecol 24:283–292. doi:10.1111/j.1365-2435.2009.01642.x

    Article  Google Scholar 

  • McNaughton SJ, Banyikwa FF, McNaughton MM (1997) Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278:1798–1800. doi:10.1126/science.278.5344.1798

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. doi:10.1146/annurev.genet.41.110306.130119

    Article  CAS  PubMed  Google Scholar 

  • Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127. doi:10.1186/1471-2229-13-127

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc R Soc B Biol Sci 275:293–299

    Article  Google Scholar 

  • Omacini M, Semmartin M, Perez LI, Gundel PE (2012) Grass–endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol 61:273–279. doi:10.1016/j.apsoil.2011.10.012

    Article  Google Scholar 

  • Orians CM, Jones CG (2001) Plants as resource mosaics: a functional model for predicting patterns of within-plant resource heterogeneity to consumers based on vascular architecture and local environmental variability. J Chem Ecol 94:493–504. doi:10.1034/j.1600-0706.2001.940311.x

    Google Scholar 

  • Rasmussen S, Parsons AJ, Bassett S, Christensen MJ, Hume DE, Johnson LJ, Johnson RD, Simpson WR, Stacke C, Voisey CR, Xue H, Newman JA (2007) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol 173:787–797

    Article  CAS  PubMed  Google Scholar 

  • Ren A, Wei M, Yin L, Wu L, Zhou Y, Li X, Gao Y (2014) Benefits of a fungal endophyte in Leymus chinensis depend more on water than on nutrient availability. Environ Exp Bot 108:71–78. doi:10.1016/j.envexpbot.2013.11.019

    Article  CAS  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. doi:10.1111/j.1469-8137.2009.02773.x

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Saona C, Thaler JS (2005) Herbivore-induced responses and patch heterogeneity affect abundance of arthropods on plants. Ecol Entomol 30:156–163. doi:10.1111/j.0307-6946.2005.00682.x

    Article  Google Scholar 

  • Rudgers JA, Holah J, Orr SP, Clay K (2007) Forest succession suppressed by an introduced plant-fungal symbiosis. Ecology 88:18–25

    Article  PubMed  Google Scholar 

  • Rudgers JA, Miller TEX, Ziegler SM, Craven KD (2012) There are many ways to be a mutualist: endophytic fungus reduces plant survival but increases population growth. Ecology 93:565–574

    Article  PubMed  Google Scholar 

  • Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592. doi:10.1016/j.tree.2006.06.018

    Article  PubMed  Google Scholar 

  • Saikkonen K, Helander M, Faeth SH, Schulthess F, Wilson D (1999) Endophyte–grass–herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia 121:411–420

    Article  Google Scholar 

  • SAS Institute, Inc. (2012) SAS version 9.3. SAS Institute, Cary, NC

    Google Scholar 

  • Schardl CL, Craven KD, Speakman S, Stromberg A, Lindstrom A, Yoshida R (2008) A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Syst Biol 57:483–498. doi:10.1080/10635150802172184

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O’Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Gueldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z (2013) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9:e1003323. doi:10.1371/journal.pgen.1003323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schardl CL, Young CA, Moore N, Krom N, Dupont P-Y, Pan J, Florea S, Webb JS, Jaromczyk J, Jaromczyk JW, Cox MP, Farman ML (2014) Genomes of plant-associated Clavicipitaceae. Adv Bot Res 70:291–327

    Article  Google Scholar 

  • Semmartin M, Omacini M, Gundel PE, Hernández-Agramonte IM (2015) Broad-scale variation of fungal-endophyte incidence in temperate grasses. J Ecol 103:184–190

    Article  Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17:278–285

    Article  Google Scholar 

  • Takach JE, Young CA (2014) Alkaloid genotype diversity of tall fescue endophytes. Crop Sci 54:667–678. doi:10.2135/cropsci2013.06.0423

    Article  CAS  Google Scholar 

  • Tanentzap AJ, Vicari M, Bazely DR (2014) Ungulate saliva inhibits a grass–endophyte mutualism. Biol Lett 10:20140460. doi:10.1098/rsbl.2014.0460

    Article  PubMed  PubMed Central  Google Scholar 

  • Thrower LB, Lewis DH (1973) Uptake of sugars by Epichloë typhina (Pers. Ex Fr.) Tul. in culture and from its host, Agrostis stolonifera L. New Phytol 72:501–508

    Article  CAS  Google Scholar 

  • Valdez Barillas JR, Paschke MW, Ralphs MH, Child RD (2007) White locoweed toxicity is facilitated by a fungal endophyte and nitrogen-fixing bacteria. Ecology 88:1850–1856

    Article  PubMed  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. doi:10.1038/nrmicro1969

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J. M. and D. E. P. were supported by the US National Science Foundation DEB-0614406. J. A. R. was supported by the US National Science Foundation DEB-1354972 and 1145588. The authors have no other conflicts of interest to declare. Thanks to Beth Haley and Ben Goodheart for field and laboratory assistance. This article does not contain any studies with human participants or animals performed by any of the authors.

Author contribution statement

J. L. M. and D. E. P. conceived, designed, and performed the experimental manipulations. R. A. F., E. O., and J. A. R. collected the endophyte data. J. A. R. analyzed the data. C. A. Y. and N. D. C. characterized the endophyte identity. J. A. R. led the writing, with substantial contributions from co-authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Rudgers.

Additional information

Communicated by Maria J. Pozo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudgers, J.A., Fletcher, R.A., Olivas, E. et al. Long-term ungulate exclusion reduces fungal symbiont prevalence in native grasslands. Oecologia 181, 1151–1161 (2016). https://doi.org/10.1007/s00442-016-3620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3620-7

Keywords

Navigation