Skip to main content

The effects of invertebrate herbivores on plant population growth: a meta-regression analysis

Abstract

Over the last two decades, an increasing number of studies have quantified the effects of herbivory on plant populations using stage-structured population models and integral projection models, allowing for the calculation of plant population growth rates (λ) with and without herbivory. In this paper, I assembled 29 studies and conducted a meta-regression to determine the importance of invertebrate herbivores to population growth rates (λ) while accounting for missing data. I found that invertebrate herbivory often induced important reductions in plant population growth rates (with herbivory, λ was 1.08 ± 0.36; without herbivory, λ was 1.28 ± 0.58). This relationship tended to be weaker for seed predation than for other types of herbivory, except when seed predation rates were very high. Even so, the amount by which studies reduced herbivory was a poor predictor of differences in population growth rates—which strongly cautions against using measured herbivory rates as a proxy for the impact of herbivores. Herbivory reduced plant population growth rates significantly more when potential growth rates were high, which helps to explain why there was less variation in actual population growth rates than in potential population growth rates. The synthesis of these studies also shows the need for future studies to report variance in estimates of λ and to quantify how λ varies as a function of plant density.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Buckley YM, Ramula S, Blomberg SP et al (2010) Causes and consequences of variation in plant population growth rate: a synthesis of matrix population models in a phylogenetic context. Ecol Lett. doi:10.1111/j.1461-0248.2010.01506.x

    Google Scholar 

  • Caswell H (1989) Matrix population models construction, analysis, and interpretation. Sinauer Associates, Sunderland

    Google Scholar 

  • Chun YJ, van Kleunen M, Dawson W (2010) The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecol Lett. doi:10.1111/j.1461-0248.2010.01498.x

    PubMed  Google Scholar 

  • Crawley MJ (1989) Insect herbivores and plant population dynamics. Annu Rev Entomol. doi:10.1146/annurev.en.34.010189.002531

    Google Scholar 

  • Crone EE, Menges ES, Ellis MM et al (2011) How do plant ecologists use matrix population models? Ecol Lett 14:1–8. doi:10.1111/j.1461-0248.2010.01540.x

    Article  PubMed  Google Scholar 

  • Dauer JT, McEvoy PB, Van Sickle J (2012) Controlling a plant invader by targeted disruption of its life cycle. J Appl Ecol 49:322–330. doi:10.1111/j.1365-2664.2012.02117.x

    Article  Google Scholar 

  • Easterling M, Ellner S, Dixon P (2000) Size-specific sensitivity: applying a new structured population model. Ecology 81:694–708

    Article  Google Scholar 

  • Egan JF, Irwin RE (2008) Evaluation of the field impact of an adventitious herbivore on an invasive plant, yellow toadflax, in Colorado, USA. Plant Ecol 199:99–114. doi:10.1007/s11258-008-9415-0

    Article  Google Scholar 

  • Ehrlén J (1995) Demography of the perennial herb Lathyrus vernus. II. Herbivory and population dynamics. J Ecol 83:297–308

    Google Scholar 

  • Ehrlén J (1996) Spatiotemporal variation in predispersal seed predation intensity. Oecologia 108:708–713

    Article  Google Scholar 

  • Ehrlén J (2002) Assessing the lifetime consequences of plant-animal interactions for the perennial herb Lathyrus vernus (Fabaceae). Perspect Plant Ecol Evol Syst 5:145–163. doi:10.1078/1433-8319-00031

    Article  Google Scholar 

  • Ehrlén J (2003) Fitness components versus total demographic effects: evaluating herbivore impacts on a perennial herb. Am Nat 162:796–810. doi:10.1086/379350

    Article  PubMed  Google Scholar 

  • Elderd BD, Doak DF (2006) Comparing the direct and community-mediated effects of disturbance on plant population dynamics: flooding, herbivory and Mimulus guttatus. J Ecol 94:656–669. doi:10.1111/j.1365-2745.2006.01115.x

    Article  Google Scholar 

  • Fagan W, Bishop J (2000) Trophic interactions during primary succession: herbivores slow a plant reinvasion at Mount St. Helens. Am Nat 155:238–251. doi:10.1086/303320

    Article  PubMed  Google Scholar 

  • Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665

  • Fine PVA, Miller ZJ, Mesones I et al (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:150–162

    Article  Google Scholar 

  • Fröborg H, Eriksson O (2003) Predispersal seed predation and population dynamics in the perennial understorey herb Actaea spicata. Can J Bot 81:1058–1069. doi:10.1139/b03-099

    Article  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741. doi:10.1109/TPAMI.1984.4767596

    CAS  Article  PubMed  Google Scholar 

  • Green PT, Harms KE, Connell JH (2014) Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proc Natl Acad Sci USA. doi:10.1073/pnas.1321892112

    Google Scholar 

  • Greenland S (1987) Quantitative methods in the review of epidemiologic literature. Epidemiol Rev 9:1–30

    CAS  PubMed  Google Scholar 

  • Gurevitch J, Hedges LV (2001) Meta-analysis: combining the results of independent experiments, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Halpern SL, Underwood N (2006) Approaches for testing herbivore effects on plant population dynamics. J Appl Ecol 43:922–929. doi:10.1111/j.1365-2664.2006.01220.x

    Article  Google Scholar 

  • Hartley SE, Jones CG (1997) Plant chemistry and herbivory, or why the world is green. In: Crawley M (ed) Plant ecology. Blackwell Scientific, Cambridge, pp 284–324

    Google Scholar 

  • Hawkes CV, Sullivan JJ (2001) The impact of herbivory on plants in different resource conditions: a meta-analysis. Ecology 82:2045–2058

    Article  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Huwaldt J, Steinhorst S (2013) Plot Digitizer. Available at: http://plotdigitizer.sourceforge.net/

  • Ibáñez I, Katz DSW, Peltier D et al (2014) Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess-multiresponse dynamics. J Ecol 102:882–895. doi:10.1111/1365-2745.12223

    Article  Google Scholar 

  • Jongejans E, Sheppard AW, Shea K (2006) What controls the population dynamics of the invasive thistle Carduus nutans in its native range? J Appl Ecol 43:877–886. doi:10.1111/j.1365-2664.2006.01228.x

    Article  Google Scholar 

  • Koricheva J, Gurevitch J, Mengersen K (2013) Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton

    Book  Google Scholar 

  • Lajeunesse M (2013) Recovering missing or partial data from studies: a survey of conversions and imputations for meta-analysis. In: Koricheva J, Gurevitch J, Mengersen K (eds) Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton, pp 196–206

  • Lau JA, McCall AC, Davies KF et al (2008) Herbivores and edaphic factors constrain the realized niche of a native plant. Ecology 89:754–762

    Article  PubMed  Google Scholar 

  • Louda SM, Rodman JE (1996) Insect herbivory as a major factor in the shade distribution of a native crucifer (Cardamine Cordifolia A. Gray, Bittercress). J Ecol 84:229–237. doi:10.2307/2261358

    Article  Google Scholar 

  • Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc B 273:2575–2584. doi:10.1098/rspb.2006.3587

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller TEX, Louda SM, Rose K, Eckberg JO (2009) Impacts of insect herbivory on cactus population dynamics: experimental demography across an environmental gradient. Ecol Monogr 79:155–172. doi:10.1890/07-1550.1

    Article  Google Scholar 

  • Morris WF, Hufbauer R, Agrawal A et al (2007) Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology 88:1021–1029. doi:10.1890/06-0442

    Article  PubMed  Google Scholar 

  • Nelson ESD, Harris S, Soulsbury CD et al (2010) Uncertainty in population growth rates: determining confidence intervals from point estimates of parameters. PLoS One 5:e13628. doi:10.1371/journal.pone.0013628

    Article  Google Scholar 

  • Ogle K, Pathikonda S, Sartor K et al (2014) A model-based meta-analysis for estimating species-specific wood density and identifying potential sources of variation. J Ecol 102:194–208. doi:10.1111/1365-2745.12178

    Article  Google Scholar 

  • Orwin RG (1983) A fail-safe N for effect size in meta-analysis. J Educ Behav Stat 8:157–159. doi:10.3102/10769986008002157

    Article  Google Scholar 

  • Parker MA, Root RB (1981) Insect herbivores limit habitat distribution of a native composite, Machaeranthera canescens. Ecology 62:1390–1392

    Article  Google Scholar 

  • Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Available at: http://mcmc-jags.sourceforge.net/

  • Plummer M (2014) rjags: Bayesian graphical models using MCMC. Available at: https://cran.r-project.org/web/packages/rjags/rjags.pdf

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Ramula S, Buckley YM (2009) Multiple life stages with multiple replicated density levels are required to estimate density dependence for plants. Oikos 118:1164–1173. doi:10.1111/j.1600-0706.2009.17595.x

    Article  Google Scholar 

  • Ramula S, Rees M, Buckley YM (2009) Integral projection models perform better for small demographic data sets than matrix population models: a case study of two perennial herbs. J Appl Ecol 46:1048–1053. doi:10.1111/j.1365-2664.2009.01706.x

    Article  Google Scholar 

  • Rand T (2002) Variation in insect herbivory across a salt marsh tidal gradient influences plant survival and distribution. Oecologia 132:549–558. doi:10.1007/s00442-002-0989-2

    Article  Google Scholar 

  • Rose KE, Russell FL, Louda SM (2011) Integral projection model of insect herbivore effects on Cirsium altissimum populations along productivity gradients. Ecosphere 2:1–19. doi:10.1890/ES11-00096.1

    Article  Google Scholar 

  • Schmidt IB, Mandle L, Ticktin T, Gaoue OG (2011) What do matrix population models reveal about the sustainability of non-timber forest product harvest? J Appl Ecol 48:815–826. doi:10.1111/j.1365-2664.2011.01999.x

    Article  Google Scholar 

  • Schutzenhofer MR, Valone TJ, Knight TM (2009) Herbivory and population dynamics of invasive and native Lespedeza. Oecologia 161:57–66. doi:10.1007/s00442-009-1354-5

    Article  PubMed  Google Scholar 

  • Silvertown J, Franco M, Pisanty I, Mendoza A (1993) Comparative plant demography–relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J Ecol 81:465–476

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc 64:583–639. doi:10.1111/1467-9868.00353

    Article  Google Scholar 

  • Stephens AE, Westoby M (2015) Effects of insect attack to stems on plant survival, growth, reproduction and photosynthesis. Oikos 124:266–273. doi:10.1111/oik.01809

    Article  Google Scholar 

  • Turcotte MM, Davies TJ, Thomsen CJM et al (2014) Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants. Proc R Soc B 281:1–7. doi:10.1098/rspb.2014.0555

    Article  Google Scholar 

  • Van der Putten W (2003) Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology 84:2269–2280

    Article  Google Scholar 

  • Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48

    Article  Google Scholar 

  • von Euler T, Ågren J, Ehrlén J (2014) Environmental context influences both the intensity of seed predation and plant demographic sensitivity to attack. Ecology 95:495–504

    Article  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer SBM, New York

    Book  Google Scholar 

  • Zhu Y, Comita LS, Hubbell SP, Ma K (2015) Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J Ecol 103:957–966. doi:10.1111/1365-2745.12414

    Article  Google Scholar 

  • Zvereva EL, Lanta V, Kozlov MV (2010) Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia 163:949–960. doi:10.1007/s00442-010-1633-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to Inés Ibáñez for excellent advice and support throughout this project, and to Don Zak, Mark Hunter, Knute Nadelhoffer, Ben Lee, Teegan McClung, Natalie Tonn, and two anonymous reviewers for their helpful comments on an earlier version of this manuscript. The author was supported in part by a graduate research fellowship from the National Science Foundation.

Author contribution statement

DSWK conceived, designed, and executed this study and wrote the manuscript. No other person is entitled to authorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. W. Katz.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by Julia Koricheva.

An increasing number of experiments are testing the effects of invertebrate herbivores on plant population growth rates, and this study uses a novel meta-regression approach to quantitatively synthesize their results for the first time. Invertebrate herbivores often had substantial effects on plant population growth rates, but their effects were poorly predicted by measured damage rates. Herbivores also had more of an effect on plant populations with higher potential population growth rates; this reduced overall variation in realized plant population growth rates.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 905 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katz, D.S.W. The effects of invertebrate herbivores on plant population growth: a meta-regression analysis. Oecologia 182, 43–53 (2016). https://doi.org/10.1007/s00442-016-3602-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3602-9

Keywords

  • Insect herbivory
  • Plant–insect interactions
  • Integral projection models
  • Matrix population models
  • Meta-analysis