Skip to main content

Advertisement

Log in

Life in the clouds: are tropical montane cloud forests responding to changes in climate?

  • Concepts, Reviews and Syntheses
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The humid tropics represent only one example of the many places worldwide where anthropogenic disturbance and climate change are quickly affecting the feedbacks between water and trees. In this article, we address the need for a more long-term perspective on the effects of climate change on tropical montane cloud forests (TMCF) in order to fully assess the combined vulnerability and long-term response of tropical trees to changes in precipitation regimes, including cloud immersion. We first review the ecophysiological benefits that cloud water interception offers to trees in TMCF and then examine current climatological evidence that suggests changes in cloud base height and impending changes in cloud immersion for TMCF. Finally, we propose an experimental approach to examine the long-term dynamics of tropical trees in TMCF in response to environmental conditions on decade-to-century time scales. This information is important to assess the vulnerability and long-term response of TMCF to changes in cloud cover and fog frequency and duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anchukaitis KJ, Evans MN, Wheelwright NT, Schrag DP (2008) Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. J Geophys Res: Biogeosci 2005–2012:113

    Google Scholar 

  • Ataroff M, Rada F (2000) Deforestation impact on water dynamics in a Venezuelan Andean cloud forest. Ambio 29:440–444

    Article  Google Scholar 

  • Band LE, Patterson P, Nemani R, Running SW (1993) Forest ecosystem processes at the watershed scale—incorporating hillslope hydrology. Agric For Meteorol 63:93–126

    Article  Google Scholar 

  • Barbour MM, Schurr U, Henry BK, Wong SC, Farquhar GD (2000) Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Peclet effect. Plant Physiol 123:671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbour M, Roden J, Farquhar G, Ehleringer J (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia 138:426–435

    Article  PubMed  Google Scholar 

  • Barnard H, Brooks J, Bond B (2012) Applying the dual-isotope conceptual model to interpret physiological trends under uncontrolled conditions. Tree Physiol 32:1183–1198

  • Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: an overview. Clim Change 36:233–251

    Article  Google Scholar 

  • Benzing DH, Henderson K, Kessel B, Sulak J (1976) The absorptive capacities of bromeliad trichomes. Am J Bot 63:1009–1014

    Article  Google Scholar 

  • Berry ZC, White JC, Smith WK (2014) Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest. Tree Physiol 34:459–470

    Article  CAS  PubMed  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Boninsegna JA (1995) South American dendroclimatological records. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, New York, pp 446–462

    Google Scholar 

  • Bradley RS, Keimig FT, Diaz HF, Hardy DR (2009) Recent changes in freezing level heights in the tropics with implications for the deglacierization of high mountain regions. Geophys Res Lett 36:L17701. doi: 10.1029/2009GL037712

  • Breshears DD, McDowell NG, Goddard KL, Dayem KE, Martens SN, Meyer CW, Brown KM (2008) Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89:41–47

    Article  PubMed  Google Scholar 

  • Brooks JR, Mitchell AK (2011) Interpreting tree responses to thinning and fertilization using tree-ring stable isotopes. New Phytol 190:770–782

    Article  CAS  PubMed  Google Scholar 

  • Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agric Ecosyst Environ 104:185–228

    Article  Google Scholar 

  • Bruijnzeel LA, Veneklaas EJ (1998) Climatic conditions and tropical, montane forest productivity: the fog has not lifted yet. Ecology 79:3–9

    Article  Google Scholar 

  • Bruijnzeel LA, Waterloo MJ, Proctor J, Kuiters AT, Kotterink B (1993) Hydrological observations in Montane Rain-Forests on Gunung Silam, Sabah, Malaysia, with special reference to the Massenerhebung effect. J Ecol 81:145–167

    Article  Google Scholar 

  • Bruijnzeel LA, Mulligan M, Scatena FN (2011) Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol Process 25:465–498

    Article  Google Scholar 

  • Burgess SSO, Dawson TE (2004) The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ 27:1023–1034

    Article  Google Scholar 

  • Burkhardt J (2010) Hygroscopic particles on leaves: nutrients or desiccants? Ecol Monogr 80:369–399

    Article  Google Scholar 

  • Cernusak LA, Pate JS, Farquhar GD (2002) Diurnal variation in the stable isotope composition of water and dry matter in fruiting Lupinus angustifolius under field conditions. Plant Cell Environ 25:893–907

    Article  CAS  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Clark KL, Nadkarni NM, Schaefer D, Gholz HL (1998) Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. J Trop Ecol 14:27–45

    Article  Google Scholar 

  • Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81:93–134

    Article  Google Scholar 

  • Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J Hydrol 283:206–217

    Article  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceano-graphic studies and paleo-temperatures. In Proc. Stable Isotopes in Oceanographic Studies and Paleotemperatures V. Lishi e F, Pisa, pp 9–130

  • Crausbay S, Genderjahn S, Hotchkiss S, Sachse D, Kahmen A, Arndt SK (2014) Vegetation dynamics at the upper reaches of a tropical montane forest are driven by disturbance over the past 7300 years. Arct Antarct Alp Res 46:787–799

    Article  Google Scholar 

  • Dawson TE (1998) Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117:476

    Article  Google Scholar 

  • Diaz HF, Graham NE (1996) Recent changes in tropical freezing heights and the role of sea surface temperature. Nature 383:152–155

    Article  CAS  Google Scholar 

  • Diaz HF, Eischeid JK, Duncan C, Bradley RS (2003) Variability of freezing levels, melting season indicators, and snow cover for selected high- elevation and continental regions in the last 50 years. Clim Change 59:33–52

    Article  Google Scholar 

  • Diaz HF, Giambelluca TW, Eischeid JK (2011) Changes in the vertical profiles of mean temperature and humidity in the Hawaiian Islands. Glob Planet Change 77:21–25

    Article  Google Scholar 

  • Eller CB, Lima AL, Oliveira RS (2013) Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol 199:151–162

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth PV, Ellsworth PZ, Anderson WT, Sternberg LS (2013) The role of effective leaf mixing length in the relationship between the δ18O of stem cellulose and source water across a salinity gradient. Plant Cell Environ 36:138–148

    Article  CAS  PubMed  Google Scholar 

  • European Space Agency (ESA) (2015) European Space Agency’s Biomass satellite goes ahead. Press Release No. 9. 19 Feb 2015. ESA, Paris

  • Evans MN (2007) Toward forward modeling for paleoclimatic proxy signal calibration: a case study with oxygen isotopic composition of tropical woods. Geochem Geophys Geosyst 8(7):Q07008. doi: 10.1029/2006GC001406

  • Evans MN, Schrag DP (2004) A stable isotope-based approach to tropical dendroclimatology. Geochim Cosmochim Acta 68:3295–3305

    Article  CAS  Google Scholar 

  • Ewing HA, Weathers KC, Templer PH, Dawson TE, Firestone MK, Elliott AM, Boukili VKS (2009) Fog water and ecosystem function: heterogeneity in a California Redwood Forest. Ecosystems 12:417–433

    Article  CAS  Google Scholar 

  • Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer J, Hall A, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic Press, San Diego, pp 47–70

    Chapter  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Feild TS, Dawson TE (1998) Water sources used by Didymopanax pittieri at different life stages in a tropical cloud forest. Ecology 79:1448–1452

    Article  Google Scholar 

  • Fekete BM, Vorosmarty CJ, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob Biogeochem Cycles 16(3):102. doi: 10.1029/1999GB001254

  • Feng X, Porporato A, Rodriguez-Iturbe I (2013) Changes in rainfall seasonality in the tropics. Nat Clim Change 3:811–815

    Article  Google Scholar 

  • Fleming TH (1986) Secular changes in Costa Rican rainfall: correlation with elevation. J Trop Ecol 2:87–91

    Article  Google Scholar 

  • Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci Rev 55:73–106

    Article  Google Scholar 

  • Foster P (2010) Changes in mist immersion. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 57–66

    Google Scholar 

  • Frahm JP, Gradstein SR (1991) An altitudinal zonation of tropical rain forests using bryophytes. J Biogeogr 18:669–676

    Article  Google Scholar 

  • Francey R, Farquhar G (1982) An explanation of 13C/12C variations in tree rings. Nature 297:28–31

    Article  CAS  Google Scholar 

  • Frank DC, Poulter B, Saurer M, Esper J, Huntingford C, Helle G, Treydte K, Zimmermann NE, Schleser GH, Ahlstrom A, Ciais P, Friedlingstein P, Levis S, Lomas M, Sitch S, Viovy N, Andreu-Hayles L, Bednarz Z, Berninger F, Boettger T, Alessandro CMD, Daux V, Filot M, Grabner M, Gutierrez E, Haupt M, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Marah H, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M (2015) Water-use efficiency and transpiration across European forests during the Anthropocene. Nat Clim Change 5:579–583

    Article  CAS  Google Scholar 

  • Gagen M, Zorita E, McCarroll D, Young GH, Grudd H, Jalkanen R, Loader NJ, Robertson I, Kirchhefer A (2011) Cloud response to summer temperatures in Fennoscandia over the last thousand years. Geophys Res Lett 38:L05701. doi: 10.1029/2010GL046216

  • Goldsmith GR, Comita LS, Chua SC (2011) Evidence for arrested succession within a tropical forest fragment in Singapore. J Trop Ecol 27:323–326

    Article  Google Scholar 

  • Goldsmith GR, Matzke NJ, Dawson TE (2013) The incidence and implications of clouds for cloud forest plant water relations. Ecol Lett 16:307–314

    Article  PubMed  Google Scholar 

  • Gotsch SG, Asbjornsen H, Holwerda F, Goldsmith GR, Weintraub AE, Dawson TE (2014a) Foggy days and dry nights determine crown-level water balance in a seasonal tropical montane cloud forest. Plant Cell Environ 37:261–272

    Article  PubMed  Google Scholar 

  • Gotsch SG, Crausbay SD, Giambelluca TW, Weintraub AE, Longman RJ, Asbjornsen H, Hotchkiss SC, Dawson TE (2014b) Water relations and microclimate around the upper limit of a cloud forest in Maui, Hawai’i. Tree Physiol 34:766–777

    Article  PubMed  Google Scholar 

  • Gotsch SG, Nadkarni N, Darby A, Glunk A, Dix M, Davidson K, Dawson TE (2015) Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecol Monogr 85:393–412

    Article  Google Scholar 

  • Govender Y, Cuevas E, Sternberg LDS, Jury MR (2013) Temporal variation in stable isotopic composition of rainfall and groundwater in a tropical dry forest in the Northeastern Caribbean. Earth Interact 17:1–20

    Article  Google Scholar 

  • Hamilton LS, Juvik JO, Scatena FN (eds) (1995) Tropical montane cloud forests. Ecological studies, vol 110. Springer, New York

    Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.1126/science.1244693

    Article  CAS  PubMed  Google Scholar 

  • Harwood KG, Gillon JS, Griffiths H, Broadmeadow MSJ (1998) Diurnal variation of Delta(CO2)-C-13, Delta(COO)-O-18-O-16 and evaporative site enrichment of delta(H2O)-O-18 in Piper aduncum under field conditions in Trinidad. Plant Cell Environ 21:269–283

    Article  CAS  Google Scholar 

  • Helliker BR, Richter SL (2008) Subtropical to boreal convergence of tree-leaf temperatures. Nature 454:U511–U516

    Article  CAS  Google Scholar 

  • Henderson-Sellers A, Gornitz V (1984) Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Clim Change 6:231–257

    Article  Google Scholar 

  • Hill AJ, Dawson TE, Shelef O, Rachmilevitch S (2015) The role of dew in Negev Desert plants. Oecologia 178(2):317–327

  • Holder CD (2004) Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. For Ecol Manag 190:373–384

    Article  Google Scholar 

  • Holwerda F, Burkard R, Eugster W, Scatena FN, Meesters A, Bruijnzeel LA (2006) Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods. Hydrol Process 20:2669–2692

    Article  Google Scholar 

  • Holwerda F, Bruijnzeel L, Muñoz-Villers L, Equihua M, Asbjornsen H (2010) Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico. J Hydrol 384:84–96

    Article  Google Scholar 

  • Holwerda F, Bruijnzeel LA, Scatena FN (2011) Comparison of passive fog gauges for determining fog duration and fog interception by a Puerto Rican elfin cloud forest. Hydrol Process 25:367–373

    Article  Google Scholar 

  • Hoover MD (1944) Effect of removal of forest vegetation upon water-yields. Trans Am Geophys Union 25:969–975

    Article  Google Scholar 

  • Hughes MK (2002) Dendrochronology in climatology—the state of the art. Dendrochronologia 20:95–116

    Article  Google Scholar 

  • Hughes MK, Swetnam TW, Diaz HF (eds) (2010) Dendroclimatology: progress and prospects, vol 11. Springer Science & Business Media, New York

    Google Scholar 

  • Jarvis PG (1976) Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. Philos Trans R Soc Lond Ser B-Biol Sci 273:593–610

    Article  CAS  Google Scholar 

  • Johnstone JA, Roden JS, Dawson TE (2013) Oxygen and carbon stable isotopes in coast redwood tree rings respond to spring and summer climate signals. J Geophys Res: Biogeosci 118:1438–1450

    Article  CAS  Google Scholar 

  • Kahmen A, Sachse D, Arndt SK, Tu KP, Farrington H, Vitousek PM, Dawson TE (2011) Cellulose δ18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants. Proc Natl Acad Sci USA 108:1981–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapos V, Tanner EVJ (1985) Water relations of Jamaican upper montane rain-forest trees. Ecology 66:241–250

    Article  Google Scholar 

  • Lawton RO, Nair US, Pielke RA, Welch RM (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584–587

    CAS  PubMed  Google Scholar 

  • Leavitt SW, Long A (1982) Evidence for C-13/C-12 fractionation between tree leaves and wood. Nature 298:742–744

    Article  CAS  Google Scholar 

  • Limm EB, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161:449–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipp J, Trimborn P (1991) Long-term records and basic principles of tree-ring isotope data with emphasis on local environmental conditions. Palaoklimaforschung 6:105–117

    Google Scholar 

  • Malhi Y, Gardner TA, Goldsmith GR, Silman MR, Zelazowski P (2014) Tropical forests in the Anthropocene. Annu Rev Environ Resour 39(39):125–159

    Article  Google Scholar 

  • Matelson TJ, Nadkarni NM, Solano R (1995) Tree damage and annual mortality in a montane forest in Monteverde, Costa Rica. Biotropica 27 94):441–447

  • Meherhomji VM (1991) Probable impact of deforestation on hydrological processes. Clim Change 19:163–173

    Article  Google Scholar 

  • Mooney H, Gulmon S, Ehleringer J, Rundel P (1980) Atmospheric water uptake by an Atacama Desert shrub. Science 209:693–694

    Article  CAS  PubMed  Google Scholar 

  • Mulligan M (2010) Modeling the tropics-wide extent and distribution of cloud forest and cloud forest loss, with implications for conservation priority. Trop Montane Cloud For: Sci Conserv Manag 14–38

  • Mulligan M, Burke SM (2005) DFID FRP Project ZF0216 Global cloud forests and environmental change in a hydrological context. Final technical report. United Kingdom Department for International Development, London. Available at: http://www.ambiotek.com/cloudforests. Accessed Dec 2005

  • Muñoz-Villers L, McDonnell J (2013) Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol Earth Syst Sci 17:3543–3560

    Article  Google Scholar 

  • Nair US, Lawton RO, Welch RM, Pielke RA (2003) Impact of land use on Costa Rican tropical montane cloud forests: sensitivity of cumulus cloud field characteristics to lowland deforestation. J Geophys Res-Atmos 108:D7. doi:10.1029/2001JD001135

  • Neukom R, Rohrer M, Calanca P, Salzmann N, Huggel C, Acuña D, Christie DA, Morales MS (2015) Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000–2100. Environ Res Lett 10:084017

    Article  Google Scholar 

  • Oliveira RS, Dawson TE, Burgess SSO (2005) Evidence for direct water absorption by the shoot of the desiccation-tolerant plant Vellozia flavicans in the savannas of central Brazil. J Trop Ecol 21:585–588

    Article  Google Scholar 

  • Oliveira RS, Eller CB, Bittencourt PRL, Mulligan M (2014) The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann Bot 113:909–920

    Article  PubMed  PubMed Central  Google Scholar 

  • Pons TL, Helle G (2011) Identification of anatomically non-distinct annual rings in tropical trees using stable isotopes. Trees 25:83–93

    Article  Google Scholar 

  • Poorter H, Pepin S, Rijkers T, de Jong Y, Evans JR, Korner C (2006) Construction costs, chemical composition and payback time of high- and low-irradiance leaves. J Exp Bot 57:355–371

    Article  CAS  PubMed  Google Scholar 

  • Porter TJ, Pisaric MF, Kokelj SV, Edwards TW (2009) Climatic signals in δ13C and δ18O of tree-rings from white spruce in the Mackenzie Delta region, northern Canada. Arct Antarct Alp Res 41:497–505

    Article  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  • Poussart PF, Schrag DP (2005) Seasonally resolved stable isotope chronologies from northern Thailand deciduous trees. Earth Planet Sci Lett 235:752–765

    Article  CAS  Google Scholar 

  • Poussart PF, Evans MN, Schrag DP (2004) Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth Planet Sci Lett 218:301–316

    Article  CAS  Google Scholar 

  • Pridgeon AM (1981) Absorbing trichomes in the Pleurothallidinae (Orchidaceae). Am J Bot 68:64–71

    Article  Google Scholar 

  • Pryet A, Dominguez C, Tomai PF, Chaumont C, D’Ozouville N, Villacís M, Violette S (2012) Quantification of cloud water interception along the windward slope of Santa Cruz Island, Galapagos (Ecuador). Agric For Meteorol 161:94–106

    Article  Google Scholar 

  • Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate—results from the earth radiation budget experiment. Science 243:57–63

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Nair US, Lawton RO, Welch RM, Pielke RA (2006) Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of orographic cloud formation to deforestation in the plains. J Geophys Res-Atmos 111:D02108. doi:10.1029/2005JD006096

  • Richardson AD, Denny EG, Siccama TG, Lee X (2003) Evidence for a rising cloud ceiling in Eastern North America*. J Clim 16:2093–2098

    Article  Google Scholar 

  • Roden JS, Siegwolf R (2012) Is the dual-isotope conceptual model fully operational? Tree Physiol 32:1179–1182. doi:10.1093/treephys/tps099

    Article  PubMed  Google Scholar 

  • Roden JS, Lin GG, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35

    Article  CAS  Google Scholar 

  • Running SW, Nemani RR, Peterson DL, Band LE, Potts DF, Pierce LL, Spanner MA (1989) Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70:1090–1101

    Article  Google Scholar 

  • Sano M, Buckley BM, Sweda T (2009) Tree-ring based hydroclimate reconstruction over northern Vietnam from Fokienia hodginsii: eighteenth century mega-drought and tropical Pacific influence. Clim Dyn 33:331–340

    Article  Google Scholar 

  • Santiago LS, Goldstein G, Meinzer FC, Fownes JH, Mueller-Dombois D (2000) Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiol 20:673–681

    Article  PubMed  Google Scholar 

  • Saurer M, Spahni R, Frank DC, Joos F, Leuenberger M, Loader NJ, McCarroll D, Gagen M, Poulter B, Siegwolf RTW, Andreu-Hayles L, Boettger T, Linan ID, Fairchild IJ, Friedrich M, Gutierrez E, Haupt M, Hilasvuori E, Heinrich I, Helle G, Grudd H, Jalkanen R, Levanic T, Linderholm HW, Robertson I, Sonninen E, Treydte K, Waterhouse JS, Woodley EJ, Wynn PM, Young GHF (2014) Spatial variability and temporal trends in water-use efficiency of European forests. Glob Change Biol 20:3700–3712

    Article  Google Scholar 

  • Scatena F, Bruijnzeel L, Bubb P, Das S (2010) Setting the stage. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, p 1

    Google Scholar 

  • Scheidegger Y, Saurer M, Bahn M, Siegwolf R (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125:350–357

    Article  Google Scholar 

  • Scholl MA, Gingerich SB, Tribble GW (2002) The influence of microclimates and fog on stable isotope signatures used in interpretation of regional hydrology: East Maui, Hawaii. J Hydrol 264:170–184

    Article  CAS  Google Scholar 

  • Scholl MA, Giambelluca TW, Gingerich SB, Nullet MA, Loope LL (2007) Cloud water in windward and leeward mountain forests: the stable isotope signature of orographic cloud water. Water Resour Res 43:W12411. doi:10.1029/2007WR006011

  • Scholl M, Eugster W, Burkard R (2011) Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests. Hydrol Process 25:353–366

    Article  Google Scholar 

  • Schollaen K, Heinrich I, Neuwirth B, Krusic PJ, D’Arrigo RD, Karyanto O, Helle G (2013) Multiple tree-ring chronologies (ring width, δ 13 C and δ 18 O) reveal dry and rainy season signals of rainfall in Indonesia. Quat Sci Rev 73:170–181

    Article  Google Scholar 

  • Shestakova TA, Aguilera M, Ferrio JP, Gutiérrez E, Voltas J (2014) Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance–covariance modelling approach of carbon and oxygen isotope ratios. Tree Physiol 34:819–838. doi:10.1093/treephys/tpu037

    Article  CAS  PubMed  Google Scholar 

  • Sidorova O, Siegwolf RW, Saurer M, Shashkin A, Knorre A, Prokushkin A, Vaganov E, Kirdyanov A (2009) Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north? Oecologia 161:825–835. doi:10.1007/s00442-009-1411-0

    Article  PubMed  Google Scholar 

  • Stadtmüller T (1987) Cloud forests in the humid tropics. A bibliographic review. The United Nations University, Tokyo, and Centro Agronomico Tropical de Investigacion y Ensenanza, Turrialba, Costa Rica

  • Stadtmüller T, Agudelo N (1990) Amounts and variability of cloud moisture input in a tropical cloud forest. Int Assoc Hydrol Sci Publ 193:26–32

  • Sternberg L, Deniro MJ (1983) Isotopic composition of cellulose from C3, C4, and CAM plants growing near one another. Science 220:947–949

    Article  CAS  PubMed  Google Scholar 

  • Sternberg L, Pinzon MC, Vendramini PF, Anderson WT, Jahren AH, Beuning K (2007) Oxygen isotope ratios of cellulose-derived phenylglucosazone: an improved paleoclimate indicator of environmental water and relative humidity. Geochim Cosmochim Acta 71:2463–2473

    Article  CAS  Google Scholar 

  • Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–610

    Article  CAS  Google Scholar 

  • Swank WT, Douglass JE (1974) Streamflow greatly reduced by converting deciduous hardwood stands to pine. Science 185:857–859

    Article  CAS  PubMed  Google Scholar 

  • Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22

    Article  Google Scholar 

  • Te Linde A, Bruijnzeel L, Groen J, Scatena F, Meijer H (2001) Stable isotopes in rainfall and fog in the Luquillo Mountains, eastern Puerto Rico: a preliminary study. In: Second Int Conf on Fog and Fog Collection. International Development Research Centre, Ottawa, pp 181–184

  • Thompson ID, Okabe K, Parrotta JA, Brockerhoff E, Jactel H, Forrester DI, Taki H (2014) Biodiversity and ecosystem services: lessons from nature to improve management of planted forests for REDD-plus. Biodivers Conserv 23:2613–2635

    Article  Google Scholar 

  • Verheyden A, Helle G, Schleser GH, Dehairs F, Beeckman H, Koedam N (2004) Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata. Plant, Cell Environ 27:1525–1536

    Article  Google Scholar 

  • Voelker SL, Brooks R, Meinzer FC, Roden J, Pazdur A, Pawelczyk S, Hartsough P, Snyder K, Plavcova L, Santrucek J (2014) Reconstructing relative humidity from plant delta 18O and delta D as deuterium deviations from the global meteoric water line. Ecol Appl 24:960–975

    Article  PubMed  Google Scholar 

  • Vogelmann HW (1973) Fog precipitation in the cloud forests of eastern Mexico. Bioscience 23:96–100

    Article  Google Scholar 

  • Wang XF, Yakir D (1995) Temporal and spatial variations in the oxygen-18 content of leaf water in different plant species. Plant Cell Environ 18:1377–1385

    Article  Google Scholar 

  • Watanabe M, Shiogama H, Tatebe H, Hayashi M, Ishii M, Kimoto M (2014) Contribution of natural decadal variability to global warming acceleration and hiatus. Nat Clim Change 4:893–897

    Article  Google Scholar 

  • Weaver PL, Medina E, Pool D, Dugger K, Gonzalesliboy J, Cuevas E (1986) Ecological observations in the dwarf cloud forest of the Luquillo Mountains in Puerto-Rico. Biotropica 18:79–85

    Article  Google Scholar 

  • Welp LR, Lee X, Kim K, Griffis TJ, Billmark KA, Baker JM (2008) delta(18)O of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant Cell Environ 31:1214–1228

    Article  CAS  PubMed  Google Scholar 

  • Werner WL (1988) Canopy dieback in the Upper Montane rain forest of Sri Lanka. GeoJournal 17:245–248

    Article  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci USA 104:5738–5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AP, Schwartz RE, Iacobellis S, Seager R, Cook BI, Still CJ, Husak G, Michaelsen J (2015) Urbanization causes increased cloud base height and decreased fog in coastal Southern California. Geophys Res Lett 42:1527–15336

    Article  Google Scholar 

  • Wohl E, Barros A, Brunsell N, Chappell NA, Coe M, Giambelluca T, Goldsmith S, Harmon R, Hendrickx JMH, Juvik J, McDonnell J, Ogden F (2012) The hydrology of the humid tropics. Nat Clim Change 2:655–662

    Article  Google Scholar 

  • Xu CX, Sano M, Yoshimura K, Nakatsuka T (2014) Oxygen isotopes as a valuable tool for measuring annual growth in tropical trees that lack distinct annual rings. Geochem J 48:371–378

    Article  CAS  Google Scholar 

  • Yates D, Hutley L (1995) Foliar uptake of water by wet leaves of Sloanea woollsii an Australian subtropical rainforest tree. Aust J Bot 43:157–167

    Article  Google Scholar 

  • Zhu MF, Stott L, Buckley B, Yoshimura K (2012) 20th century seasonal moisture balance in Southeast Asian montane forests from tree cellulose delta O-18. Clim Change 115:505–517

    Article  Google Scholar 

  • Zon R (1912) Forests and water in the light of scientific investigation. Appendix V, final report of the National Waterways Commission. National Waterways Commission, Washington DC

  • Zuidema PA, Baker PJ, Groenendijk P, Schippers P, van der Sleen P, Vlam M, Sterck F (2013) Tropical forests and global change: filling knowledge gaps. Trends Plant Sci 18:413–419

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

During the revision stage, this manuscript benefited from enthusiastic discussions with participants at the session “Heads in the Clouds: Advancing our Understanding of How Fog and Dew Affect Plants in Ecosystems Around the World” at the 2015 Annual Meeting of the Ecological Society of America. We thank Chris Still, Ryan Emanuel, and two anonymous reviewers for insightful comments on a previous version of this manuscript, as well as the handling editor, Dr. Todd Dawson, for his valuable criticism.

Author contribution statement

JH and DARI contributed equally to conceiving and writing of this concept paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. JH acknowledges support from Montana State University. DARI acknowledges support from The World Bank and the Administrative Department of Science, Technology, and Innovation of Colombia (COLCIENCIAS) under the Diaspora Program (Grant No. 2012-0692) and from the National Center for Atmospheric Research while writing of this manuscript.

Additional information

Communicated by Russell K. Monson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Riveros-Iregui, D.A. Life in the clouds: are tropical montane cloud forests responding to changes in climate?. Oecologia 180, 1061–1073 (2016). https://doi.org/10.1007/s00442-015-3533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3533-x

Keywords

Navigation