Oecologia

, Volume 180, Issue 3, pp 717–733 | Cite as

Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species

  • Katherine R. Amato
  • Rodolfo Martinez-Mota
  • Nicoletta Righini
  • Melissa Raguet-Schofield
  • Fabiana Paola Corcione
  • Elisabetta Marini
  • Greg Humphrey
  • Grant Gogul
  • James Gaffney
  • Elijah Lovelace
  • LaShanda Williams
  • Albert Luong
  • Maria Gloria Dominguez-Bello
  • Rebecca M. Stumpf
  • Bryan White
  • Karen E. Nelson
  • Rob Knight
  • Steven R. Leigh
Plant-microbe-animal interactions - Original research

Abstract

Recent studies suggest that variation in diet across time and space results in changes in the mammalian gut microbiota. This variation may ultimately impact host ecology by altering nutritional status and health. Wild animal populations provide an excellent opportunity for understanding these interactions. However, compared to clinical studies, microbial research targeting wild animals is currently limited, and many published studies focus only on a single population of a single host species. In this study we utilize fecal samples from two species of howler monkey (Alouatta pigra and A. palliata) collected at four sites to investigate factors influencing the gut microbiota at three scales: taxonomic (host species), ecosystemic (forest type), and local (habitat disturbance/season). The results demonstrate that the effect of host species on the gut microbiota is stronger than the effect of host forest type, which is stronger than the effect of habitat disturbance or seasonality. Nevertheless, within host species, gut microbiota composition differs in response to forest type, habitat disturbance, and season. Variations in the effect size of these factors are associated both with host species and environment. This information may be beneficial for understanding ecological and evolutionary questions associated with Mesoamerican howler monkeys, as well as determining conservation challenges facing each species. These mechanisms may also provide insight into the ecology of other species of howler monkeys, non-human primates, and mammals.

Keywords

Alouatta Microbiome Habitat Season Disturbance 

Notes

Acknowledgments

We would like to thank A. Estrada and the Universidad Nacional Autónoma de México, and Alvaro Molina and the Comité de Manejo Colaborativo del Parque Nacional Volcán Maderas for logistic support in the field, as well as B. Wilkinson and S. Van Belle. Funding was provided by a National Geographic Waitt grant (W139-10), an NSF Graduate Research Fellowship, and a Univ. of IL Dissertation Travel Grant to KRA, as well as the Earth Microbiome Project and NSF grant #0935347 (HOMINID) to SRL, RMS, BAW, and KEN. Thanks to INIFAP and M.C. Antonio Sanchez for permission to work in El Tormento, Mexico. Thanks to CONANP, SEMARNAT, and SAGARPA in Mexico, MARENA in Nicaragua, the Ministerio de Salud in Costa Rica, and the CDC in the US for permits and logistic support. We also appreciate the comments of two anonymous reviewers.

Data accessibility

Raw sequence data can be found in the European Bioinformatics Institute (EBI) nucleotide database under Accession Number ERP012937.

Author contributions

KRA conceived of and designed the project, provided funding, conducted fieldwork, analyzed the data and wrote the manuscript. RMM, NR, and MRS conducted fieldwork and wrote the manuscript. FBC conducted fieldwork. GH, GG, JG, EL, LW, and AL conducted laboratory analyses of samples. EM, MGDB, RMS, BW, KN, RK, and SRL provided funding, logistical support and manuscript revisions.

Supplementary material

442_2015_3507_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 48 kb)

References

  1. Adamczewski JZ, Gates CC, Soutar BM, Hudson RJ (1988) Limiting effects of snow on seasonal habitat use and diets of caribou (Rangifer tarandus groenlandicus) on Coats Island, Northwest Territories, Canada. Can J Zool 66:1986–1996CrossRefGoogle Scholar
  2. Altmann SA (1998) Foraging for survival: yearling baboons in Africa. University of Chicago Press, ChicagoGoogle Scholar
  3. Alves-Costa CP, Fonseca GAB, Christofaro C (2004) Variation in the diet of the brown-nosed coati (Nasua nasua) in southeastern Brazil. J Mammal 85:478–482CrossRefGoogle Scholar
  4. Amato KR (2013) Co-evolution in context: the importance of studying gut microbiomes in wild animals. Microbiome Sci Med. doi: 10.2478/micsm-2013-0002 Google Scholar
  5. Amato KR, Garber PA (2014) Nutrition and foraging strategies of the black howler monkey (Alouatta pigra) in Palenque National Park, Mexico. Am J Primatol 76:774–787. doi: 10.1002/ajp.22268 CrossRefPubMedGoogle Scholar
  6. Amato KR et al (2013) Habitat degradation impacts primate gastrointestinal microbiomes. ISME J 7:1344–1353CrossRefPubMedPubMedCentralGoogle Scholar
  7. Amato KR et al (2014) The role of gut microbes in satisfying the demands of adult female and juvenile wild, black howler monkeys (Alouatta pigra). Am J Phys Anthr 155:652–664. doi: 10.1002/ajpa.2262 CrossRefGoogle Scholar
  8. Amato KR et al (2015) The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol 69:434–443. doi: 10.1007/s00248-014-0554-7 CrossRefPubMedGoogle Scholar
  9. Andelt WF, Kie JG, Knowlton FF, Cardwell K (1987) Variation in coyote diets associated with season and successional changes in vegetation. J Wildl Manag 51:273–277CrossRefGoogle Scholar
  10. Arroyo-Rodriguez V, Dias PAD (2009) Effects of habitat fragmentation and disturbance on howler monkeys: a review. Am J Primatol 71:1–16Google Scholar
  11. Arroyo-Rodriguez V, Mandujano S (2006) Forest fragmentation modifies habitat quality for Alouatta palliata. Int J Primatol 27:1079–1096CrossRefGoogle Scholar
  12. Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. doi: 10.1038/nature09944 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bailey M (2012) The contributing role of the intestinal microbiota in stressor-induced increases in susceptibility to enteric infection and systemic immunomodulation. Horm Behav 62:286–294CrossRefPubMedGoogle Scholar
  14. Barelli C et al (2015) Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci Rep 5:14862CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bauer E, Williams BA, Smidt H, Verstegen MW, Mosenthin R (2006) Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr Issues Intest Microbiol 7:35–51PubMedGoogle Scholar
  16. Baumgarten A, Williamson BG (2007) Distribution of the black howler monkey (Alouatta pigra) and the mantled howler monkey (A. palliata) in their contact zone in eastern Guatemala. Neotrop Primates 14:11–18CrossRefGoogle Scholar
  17. Benitez-Malvido J, Martinez-Ramos M (2003) Impact of forest fragmentation on understory plant species richness in Amazonia. Conserv Biol 17:389–400CrossRefGoogle Scholar
  18. Bicca-Marques JC (2003) How do howler monkeys cope with habitat fragmentation? In: Marsh LK (ed) Primates in fragments: ecology and conservation. Kluwer/Plenum Publ, New York, pp 283–303CrossRefGoogle Scholar
  19. Bokulich NA et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bush SE, Reed M, Maher S (2013) Impact of forest size on parasite biodiversity: implications for conservation of hosts and parasites. Biodivers Conserv 22:1391–1404CrossRefGoogle Scholar
  21. Campbell C, Fuentes A, MacKinnon KC, Bearder SK, Stumpf RM (2011) Primates in perspective, second edn. Oxford University Press, New YorkGoogle Scholar
  22. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624CrossRefPubMedPubMedCentralGoogle Scholar
  23. Carbonero F, Benefiel AC, Gaskins HR (2012) Contributions of the microbial hydrogen economy on colonic homeostasis. Nat Rev Gastroenterol Hepatol 9:504–518. doi: 10.1038/nrgastro.2012.85 CrossRefPubMedGoogle Scholar
  24. Cerling TE, Viehl K (2004) Seasonal diet changes of the forest hog (Hylochoerus meinertzhageni Thomas) based on the carbon isotopic composition of hair. Afr J Ecol 42:88–92CrossRefGoogle Scholar
  25. Chao A, Chazdon RL, Colwell RK, Shen T (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159CrossRefGoogle Scholar
  26. Chapman C, Pavelka MS (2005) Group size in folivorous primates: ecological constraints and the possible influence of social factors. Primates 46:1–9CrossRefPubMedGoogle Scholar
  27. Chasar A, Loiseau C, Valkiunas G, Iezhova T, Smith TB, Sehgal RNM (2009) Prevalence and diversity patterns of avian blood parasites in degraded African rainforest habitats. Mol Ecol 18:4121–4133CrossRefPubMedGoogle Scholar
  28. Chaves OM, Stoner KE, Arroyo-Rodriguez V (2011) Seasonal differences in activity patterns of Geoffroyi’s spider monkeys (Ateles geoffroyi) living in continuous and fragmented forests in southern Mexico. Int J Primatol 32:960–973CrossRefGoogle Scholar
  29. Chiarello AG (1994) Diet of the brown howler monkey Alouatta fusca in a semi-deciduous forest fragment of southeastern Brazil. Primates 35:25–34CrossRefGoogle Scholar
  30. Chichlowski M, Sharp JM, Vanderford DA, Myles MH, Hale LP (2008) Helicobacter typhlonius and Helicobacter rodentium differentially affect the severity of colon inflammation and inflammation-associated neoplasi in IL 10-deficient mice. Comp Med 58:534–541PubMedPubMedCentralGoogle Scholar
  31. Conklin NL, Wrangham RW (1994) The value of figs to a hind-gut fermenting frugivore: a nutritional analysis. Biochem Syst Ecol 22:137–161CrossRefGoogle Scholar
  32. Cortes-Ortiz L, Bermingham E, Rico C, Rodriguez Luna E, Sampaio I, Ruiz-Garcia M (2003) Molecular systematics and biogeography of the neotropical monkey genus Alouatta. Mol Phylogenet Evol 26:64–81CrossRefPubMedGoogle Scholar
  33. Cristobal-Azkarate J, Arroyo-Rodriguez V (2007) Diet and activity pattern of howler monkeys (Alouatta palliata) in Los Tuxtlas, Mexico: effects of habitat fragmentation and implications for conservation. Am J Primatol 69:1013–1029CrossRefPubMedGoogle Scholar
  34. Crockett CM (1998) Conservation biology of the genus Alouatta. Int J Primatol 19:549–578CrossRefGoogle Scholar
  35. Cuaron AD et al (2008) Alouatta palliata. The IUCN red list of threatened species, version 2014.3 ednGoogle Scholar
  36. David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–566. doi: 10.1038/nature12820 CrossRefPubMedPubMedCentralGoogle Scholar
  37. de Oliveira EHC et al (2002) The phylogeny of howler monkeys (Alouatta, Platyrrhini): reconstruction by multicolor cross-species chromosome painting. Chromosome Res 10:669–683CrossRefPubMedGoogle Scholar
  38. Delsuc F, Metcalf JL, Parfrey LW, Song SJ, Gonzalez A, Knight R (2014) Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol 23:1301–1317CrossRefPubMedGoogle Scholar
  39. Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476CrossRefPubMedGoogle Scholar
  40. Di Fiore A, Link A, Campbell C (2011) The Atelines: behavioral and socioecological diversity in a New World monkey radiation. In: Campbell C, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds) Primates in perspective, 2nd edn. Oxford University Press, Oxford, pp 390–416Google Scholar
  41. Dias PAD, Rangel-Negrin A (2015) Diets of howler monkeys. In: Kowalewski MM, Garber PA, Cortes-Ortiz L, Urbani B, Youlatos D (eds) Howler monkeys: behavior, ecology, and conservation. Springer, New York, pp 21–56Google Scholar
  42. Dias PAD, Rangel-Negrin A, Canales-Espinosa D (2011) Effects of lactation on the time-budgets and foraging patterns of female black howlers (Alouatta pigra). Am J Phys Anthr 145:137–146CrossRefGoogle Scholar
  43. Donohoe DR et al (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526CrossRefPubMedPubMedCentralGoogle Scholar
  44. Dunbar RIM (1980) Demographic and life history variables of a population of gelada baboons (Theropithecus gelada). J Anim Ecol 49:485–506CrossRefGoogle Scholar
  45. Dunn JC, Cristobal-Azkarate J, Vea JJ (2009) Differences in diet and activity pattern between two groups of Alouatta palliata associated with the availability of big trees and fruit of top food taxa. Am J Primatol 71:654–662CrossRefPubMedGoogle Scholar
  46. Dunn JC, Cristobal-Azkarate J, Vea JJ (2010) Seasonal variation in the diet and feeding effort of two groups of howlers in different sized forest fragments. Int J Primatol 31:887–903CrossRefGoogle Scholar
  47. Estrada AE, Coates-Estrada R (1984) Fruiting and frugivores at a strangler fig in the tropical rain forest of Los Tuxtlas, Mexico. J Trop Ecol 2:349–357CrossRefGoogle Scholar
  48. Estrada AE, Coates-Estrada R (1985) A preliminary study of resource overlap between howling monkeys (Alouatta palliata) and other arboreal mammals in the tropical rain forest of Los Tuxtlas, Mexico. Am J Primatol 9:27–37CrossRefGoogle Scholar
  49. Estrada AE, Juan-Solano S, Ortiz T, Coates-Estrada R (1999) Feeding and general activity patterns of a howler monkey (Aloutta palliata) troop living in a forest fragment at Los Tuxtlas, Mexico. Am J Primatol 48:167–183CrossRefPubMedGoogle Scholar
  50. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  51. Fedigan LM, Rose LM (1995) Interbirth interval variation in three sympatric species of neotropical monkey. Am J Primatol 37:9–24CrossRefGoogle Scholar
  52. Felton AM, Felton A, Wood JT, Lindenmayer DB (2008) Diet and feeding ecology of Ateles chamek in a Bolivian semihumid forest: the importance of Ficus as a staple food resource. Int J Primatol 29:379–403CrossRefGoogle Scholar
  53. Fenoglio MS, Srivastava D, Valladares G, Cagnolo L, Salvo A (2012) Forest fragmentation reduces parasitism via species loss at multiple trophic levels. Ecology 93:2407–2420CrossRefPubMedGoogle Scholar
  54. Ford SM (2006) The biogeographic history of Mesoamerican primates. In: Estrada AE, Garber PA, Pavelka MS, Luecke L (eds) New perspectives in the study of mesoamerican primates: distribution, ecology, behavior, and conservation. Springer, New York, pp 81–114CrossRefGoogle Scholar
  55. Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Cell 36:305–312Google Scholar
  56. Fox JG et al (2001) Isolation of Helicobacter cinaedi from the colon, liver, and mesenteric lymph node of a rhesus monkey with chronic colitis and hepatitis. J Clin Microbiol 39:1580–1585CrossRefPubMedPubMedCentralGoogle Scholar
  57. Garber PA, Righini N, Kowalewski MM (2015) Evidence of alternative dietary syndromes and nutritional goals in the Genus Alouatta. In: Kowalewski MM, Garber PA, Cortes-Ortiz L, Urbani B, Youlatos D (eds) Howler monkeys: behavior, ecology and conservation. Springer, Berlin, pp 85–109Google Scholar
  58. Gogarten JF et al (2012) Seasonal mortality patterns in non-human primates: implications for variation in selection pressures across environments. Evolution 66:3252–3266CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hale VL, Tan C, Knight R, Amato KR (2015) Effect of preservation on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. J Microbiol Methods 113:16–26CrossRefPubMedGoogle Scholar
  60. Hamilton WJ (1985) Demographic consequences of a food and water shortage to desert chacma baboons, Papio ursinus. Int J Primatol 6:451–462CrossRefGoogle Scholar
  61. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273CrossRefPubMedPubMedCentralGoogle Scholar
  62. Horwich R, Johnson ED (1986) Geographical distribution of the black howler (Alouatta pigra) in Central America. Primates 27:53–62CrossRefGoogle Scholar
  63. Hume ID, Warner ACI (1980) Evolution of microbial digestion in mammals. Digestive physiology and metabolism in ruminants. Springer, Netherlands, pp 665–684CrossRefGoogle Scholar
  64. Kau AL, Abern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kelaita M, Dias PAD, Aguilar-Cucurachi M, Canales-Espinosa D, Cortes-Ortiz L (2011) Impact of intrasexual selection on sexual dimorphism and testes size in the Mexican howler monkeys Alouatta palliata and A. pigra. Am J Phys Anthr 146:179–187CrossRefGoogle Scholar
  66. Kobayashi Y, Koike S, Miyaji M, Hata H, Tanaka K (2006) Hingut microbes, fermentation and their seasonal variations in Hokkaido native horses compared to light horses. Ecol Res 21:285–291CrossRefGoogle Scholar
  67. Laurance WF, Delamonica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Rainforest fragmentation kills big trees. Nature 404:806CrossRefGoogle Scholar
  68. Ley RE et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651CrossRefPubMedPubMedCentralGoogle Scholar
  69. Malcolm JR (1994) Edge effects in central Amazonian forest fragments. Ecology 75:238–244CrossRefGoogle Scholar
  70. Marsh LK, Cuaron AD, Cortes-Ortiz L, Shedden A, Rodriguez Luna E, de Grammont PC (2008) Alouatta pigra. The IUCN Red List of Threatened Species., Version 2014.3 ednGoogle Scholar
  71. Martinez-Mota R (2015) The effects of habitat disturbance, host traits, and host physiology on patterns of gastrointestinal parasite infection in black howler monkeys (Alouatta pigra). PhD dissertation, Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USAGoogle Scholar
  72. McCord AI et al (2013) Fecal microbiomes of non-human primates in western Uganda reveal species-specific communities largely resistant to habitat perturbation. Am J Primatol 76:347–354CrossRefPubMedPubMedCentralGoogle Scholar
  73. Medani M, Collins D, Docherty NG, Baird AW, O’Connell PR, Winter DC (2011) Emerging role of hydrogen sulfide in colonic physiology and pathophysiology. Inflamm Bowel Dis 17:1620–1625CrossRefPubMedGoogle Scholar
  74. Miguel S et al (2013) Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 16:255–261CrossRefGoogle Scholar
  75. Moeller AH, Peeters M, Ndjango JB, Li Y, Hahn BH, Ochman H (2013) Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res 23:1715–1720CrossRefPubMedPubMedCentralGoogle Scholar
  76. Moeller AH et al (2014) Rapid changes in the gut microbiome during human evolution. PNAS 111:16431–16435. doi: 10.1073/pnas.1419136111 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Murphy PG (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88CrossRefGoogle Scholar
  78. Nakagawa N (1997) Determinants of the dramatic seasonal changes in the intake of energy and protein by Japanese monkeys in a cool temperate forest. Am J Primatol 41:267–288CrossRefPubMedGoogle Scholar
  79. Nakamura N, Amato KR, Garber PA, Estrada AE, Mackie RI, Gaskins HR (2011) Analysis of the hydrogenotrophic microbiota of wild and captive black howler monkeys (Alouatta pigra) in Palenque National Park, Mexico. Am J Primatol 73:909–919CrossRefPubMedGoogle Scholar
  80. Norconk MA, Wright BW, Conklin-Brittain NL, Vinyard CJ (2009) Mechanical and nutritional properties of food as factors in platyrrhine dietary adaptations. In: Garber PA, Bicca-Marques JC, Estrada AE, Heymann EW, Strier KB (eds) South American primates, developments in primatology: progress and prospects. Springer, New York, pp 279–319CrossRefGoogle Scholar
  81. O’Brien TG, Kinnaird M, Dierenfeld ES, Conklin-Brittain NL, Wrangham RW, Silver SC (1998) What’s so special about figs? Nature 392:668CrossRefGoogle Scholar
  82. Oliveira DG, Prata APD, Souto LS, Ferreira RA (2013) Does the edge effect influence plant community structure in a tropical dry forest? Rev Arvore 37:311–320CrossRefGoogle Scholar
  83. Overdorff DJ, Strait SG, Telo A (1997) Seasonal variation in activity and diet in a small-bodied folivorous primate, Hapalemur griseus, in southeastern Madagascar. Am J Primatol 43:211–223CrossRefPubMedGoogle Scholar
  84. Palma AC, Velez A, Gomez-Posada C, Lopez H, Zarate DA, Stevenson PR (2011) Use of space, activity patterns, and foraging behavior of red howler monkeys (Alouatta seniculus) in an Andean forest fragment in Colombia. Am J Primatol 73:1062–1071PubMedGoogle Scholar
  85. Parr NA, Melin AD, Fedigan L (2011) Figs are more than fallback foods: the relationship between Ficus and Cebus in a tropical dry forest. Int J Zool 2011:1–10. doi: 10.1155/2011/967274 CrossRefGoogle Scholar
  86. Pozo-Montuy G, Serio-Silva JC (2006) Comportamiento alimentario de monos aulladores negros (Alouatta pigra Lawrence, Cebidae) en habitat fragmentado en Balancan, Tabasco, Mexico. Acta Zool Mex 22:53–66Google Scholar
  87. Puttker T, Meyer-Lucht Y, Sommer S (2008) Effects of fragmentation on parasite burden (nematodes) of generalist and specialist small mammal species in secondary forest fragments of the coastal Atlantic Forest, Brazil. Ecol Res 23:207–215CrossRefGoogle Scholar
  88. Raguet-Schofield ML (2010) The ontogeny of feeding behavior of Nicaraguan mantled howler monkeys (Alouatta palliata). PhD dissertation, Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USAGoogle Scholar
  89. Rey-Benayas JM et al. (2007) Plant diversity in highly fragmented forest landscapes in Mexico and Chile: Implications for conservation. In: Newton AC (ed) Biodiversity Loss and Conservation in Fragmented Forest Landscapes: the Forests of Montane Mexico and Temperate South America. CAB International, Oxfordshire, pp 43–68Google Scholar
  90. Righini N (2014) Primate nutritional ecology: the role of food selection, energy intake, and nutrient balancing in Mexican black howler monkey (Alouatta pigra) foraging strategies. PhD dissertation, Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USAGoogle Scholar
  91. Rosenberger AI, Strier KB (1989) Adaptive radiation of the ateline primates. J Hum Evol 18:717–750CrossRefGoogle Scholar
  92. Rylands AB, Groves CP, Mittermeier RA, Cortes-Ortiz L, Hins JJH (2006) Taxonomy and distributions of Mesoamerican primates. In: Estrada AE, Garber PA, Pavelka MS, Luecke L (eds) New perspectives in the study of Mesoamerican primates: distribution, ecology, behavior, and conservation. Springer, New York, pp 29–79CrossRefGoogle Scholar
  93. Sampaio AB, Scariot A (2011) Edge effect on tree diversity, composition and structure in a deciduous dry forest in central Brazil. Rev Arvore 35:1121–1134CrossRefGoogle Scholar
  94. Sokol H et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. PNAS 105:16731–16736CrossRefPubMedPubMedCentralGoogle Scholar
  95. Teaford MF, Ungar PS (2000) Diet and the evolution of the earliest human ancestors. PNAS 97:13506–13511CrossRefPubMedPubMedCentralGoogle Scholar
  96. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon HA (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14Google Scholar
  97. Turner IM (1996) Species loss in fragments of tropical rainforest: a review of the evidence. J Appl Ecol 33:200–209CrossRefGoogle Scholar
  98. Urbani B (2009) Spatial mapping in wild white-faced capuchin monkeys (Cebus capucinus). PhD dissertation, Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USAGoogle Scholar
  99. Van Schaik CP, Brockman DK (eds) (2005) Seasonality in primate ecology, reproduction, and life history: an overview. Cambridge University Press, New YorkGoogle Scholar
  100. van Schaik CP, Terborgh J, Wright SJ (1993) The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annu Rev Ecol Syst 24:353–377CrossRefGoogle Scholar
  101. Vandamme P, De Ley J (1991) Proposal for a new family, campylobacteraceae. Int J Syst Bacteriol 41:451–455CrossRefGoogle Scholar
  102. Villalobos F, Valerio AA, Retana AP (2004) A phylogeny of howler monkeys (Cebidae: Alouatta) based on mitochondrial, chromosomal and morphological data. Rev Biol Trop 52:671–677Google Scholar
  103. Williams CL et al (2012) Dietary shifts affect the gastrointestinal microflora of the giant panda (Ailuropoda melanoleuca). J Anim Physiol Anim Nutr 97:577–585CrossRefGoogle Scholar
  104. Yatsunenko T et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Katherine R. Amato
    • 1
    • 3
  • Rodolfo Martinez-Mota
    • 4
  • Nicoletta Righini
    • 4
    • 5
  • Melissa Raguet-Schofield
    • 4
    • 6
  • Fabiana Paola Corcione
    • 7
  • Elisabetta Marini
    • 7
  • Greg Humphrey
    • 8
  • Grant Gogul
    • 8
  • James Gaffney
    • 8
  • Elijah Lovelace
    • 3
  • LaShanda Williams
    • 9
  • Albert Luong
    • 10
  • Maria Gloria Dominguez-Bello
    • 10
  • Rebecca M. Stumpf
    • 4
    • 11
  • Bryan White
    • 11
    • 12
  • Karen E. Nelson
    • 13
  • Rob Knight
    • 8
  • Steven R. Leigh
    • 2
  1. 1.Department of AnthropologyNorthwestern UniversityEvanstonUSA
  2. 2.Department of AnthropologyUniversity of Colorado, BoulderBoulderUSA
  3. 3.BioFrontiers InstituteUniversity of Colorado BoulderBoulderUSA
  4. 4.Department of AnthropologyUniversity of IllinoisUrbanaUSA
  5. 5.Red de Manejo Biorracional de Plagas y VectoresInstituto de Ecología, A.C.XalapaMexico
  6. 6.Department of AnthropologyColorado State UniversityFort CollinsUSA
  7. 7.Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Neuroscienze e AntropologiaUniversità di CagliariCagliariItaly
  8. 8.Department of PediatricsUniversity of California, San DiegoSan DiegoUSA
  9. 9.Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickUSA
  10. 10.Department of MedicineNew York UniversityNew YorkUSA
  11. 11.Institute for Genomic BiologyUniversity of IllinoisUrbanaUSA
  12. 12.Department of Animal SciencesUniversity of IllinoisUrbanaUSA
  13. 13.J. Craig Venter InstituteRockvilleUSA

Personalised recommendations