Skip to main content

Idiosyncratic responses of Amazonian birds to primary forest disturbance

Abstract

As humans continue to alter tropical landscapes across the world, it is important to understand what environmental factors help determine the persistence of biodiversity in modified ecosystems. Studies on well-known taxonomic groups can offer critical insights as to the fate of biodiversity in these modified systems. Here we investigated species-specific responses of 44 forest-associated bird species with different behavioural traits to forest disturbance in 171 transects distributed across 31 landscapes in two regions of the eastern Brazilian Amazon. We investigated patterns of species occurrence in primary forests varyingly disturbed by selective-logging and fire and examined the relative importance of local, landscape and historical environmental variables in determining species occurrences. Within undisturbed and disturbed primary forest transects, we found that distance to forest edge and the biomass of large trees were the most important predictors driving the occurrence of individual species. However, we also found considerable variation in species responses to different environmental variables as well as inter-regional variation in the responses of the same species to the same environmental variables. We advocate the utility of using species-level analyses to complement community-wide responses in order to uncover highly variable and species-specific responses to environmental change that remain so poorly understood.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aleixo A (1999) Effects of selective logging on a bird community in the Brazilian Atlantic forest. Condor 101:537–548. doi:10.2307/1370183

    Article  Google Scholar 

  • Banks-Leite C, Pardini R, Boscolo D, Cassano CR, Püttker T, Barros CS, Barlow J (2014) Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science. J Appl Ecol 51:849–859. doi:10.1111/1365-2664.12272

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlow J, Peres CA (2006) Effects of single and recurrent wildfires on fruit production and large vertebrate abundance in a central Amazonian forest. Biodiv Conserv 15:985–1012

    Article  Google Scholar 

  • Barlow J, Haugaasen T, Peres CA (2002) Effects of ground fires on understorey bird assemblages in Amazonian forests. Biol Conserv 105:157–169. doi:10.1016/S0006-3207(01)00177-X

    Article  Google Scholar 

  • Berenguer E, Ferreira J, Gardner TA, Aragão LEOC, De Camargo PB, Cerri CE, Durigan M, Oliveira Junior RC, Vieira ICG, Barlow J (2014) A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob Change Biol 20:3713–3726. doi:10.1111/gcb.12627

    Article  Google Scholar 

  • Bravo GA, Remsen JV, Brumfield T (2014) Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae). Evolution 68:2757–2774. doi:10.1111/evo.12506

    Article  PubMed  Google Scholar 

  • Bueno AS, Bruno RS, Pimentel TP, Sanaiotti TM, Magnusson WE (2012) The width of riparian habitats for understory birds in an Amazonian forest. Ecol Appl 22:722–734. doi:10.1890/11-0789.1

    Article  PubMed  Google Scholar 

  • Camargo OA, Moniz AC, Jorge JA, Valadares JMA (1986) Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas. Boletim Técnico 106:77

    Google Scholar 

  • Castilho CV, Magnusson WE, Araújo RNO, Luizao RC, Luizao FJ, Lima AP, Higuchi N (2006) Variation in aboveground tree live biomass in a central Amazonian forest: effects of soil and topography. For Ecol Manage 234:85–96. doi:10.1016/j.foreco.2006.06.024

    Article  Google Scholar 

  • Chao KJ, Phillips OL, Baker TR, Peacock J, Lopez-Gonzalez G, Vásquez Martínez R, Monteagudo A, Torres-Lezama A (2009) After trees die: quantities and determinants of necromass across Amazonia. Biogeosciences 6:1615–1626. doi:10.5194/bg-6-1615-2009

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi:10.1007/s00442-005-0100-x

    CAS  Article  PubMed  Google Scholar 

  • Cintra R, Naka LN (2012) Spatial variation in bird community composition in relation to topographic gradient and forest heterogeneity in a Central Amazonian rainforest. Int J Ecol 2012:1–25. doi:10.1155/2012/435671

    Google Scholar 

  • Cockle KL, Bodrati A, Lammertink M, Martin K (2015) Cavity characteristics, but not habitat, influence nest survival of cavity-nesting birds along a gradient of human impact in the subtropical Atlantic Forest. Biol Conserv 184:193–200. doi:10.1016/j.biocon.2015.01.026

    Article  Google Scholar 

  • Cohn-Haft M, Sherry TW (1994) Evolution of avian foraging stereotypies in tropical rain forest habitats. J Ornithol 135:481

    Google Scholar 

  • Cohn-Haft M, Whittaker A, Stouffer PC (1997) A new look at the “species-poor” central Amazon: the avifauna north of Manaus, Brazil. Ornithol Monogr 48:205–235

    Article  Google Scholar 

  • Comitê Brasileiro de Registros Ornitológicos (2011) Listas das aves do Brasil. Electronic database. www.cbro.org.br. Accessed 1 Oct 2014

  • Connell JH, Orias E (1964) The ecological regulation of species diversity. Am Nat 98:399–414. doi:10.2307/40157535

    Article  Google Scholar 

  • Cornelius C, Cockle K, Politi N, Berkunsky I, Sandoval L, Ojeda V, Rivera L, Hunter M Jr, Martin K (2008) Cavity-nesting birds in Neotropical forests: cavities as a potentially limiting resource. Ornitol Neotrop 19:253–268

    Google Scholar 

  • Crase B, Liedloff AC, Wintle BA (2012) A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35:879–888. doi:10.1111/j.1600-0587.2011.07138.x

    Article  Google Scholar 

  • Daily GC, Ehrlich PR, Sanchez-Azofeifa GA (2000) Countryside biogeography: utilization of human dominated habitats by the avifauna of southern Costa Rica. Ecol Appl 11:1–13. doi:10.1890/1051-0761(2001)011[0001:CBUOHD]2.0.CO;2

  • del Hoyo J, Elliott A, Sargatal, Christie DA, de Juana E (eds) (2014) Handbook of the birds of the world alive. Lynx, Barcelona. http://www.hbw.com. Accessed January 2015)

  • Dunn RR (2004) Recovery of faunal communities during tropical forest regeneration. Conserv Biol 18:302–309. doi:10.1111/j.1523-1739.2004.00151.x

    Article  Google Scholar 

  • Edwards DP, Larsen TH, Docherty TD, Ansell FA, Hsu WW, Derhé MA, Hamer KC, Wilcove DS (2011) Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proc R Soc B 278:82–90. doi:10.1098/rspb.2010.1062

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis N, Smith SJ, Pitcher CR (2012) Gradient forests: calculating importance gradients on physical predictors. Ecology 93:156–168. doi:10.1890/11-0252.1

    Article  PubMed  Google Scholar 

  • Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, Norberg J (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494. doi:10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2

  • EMBRAPA-CNPS (1997) Manual de métodos de análise de solo. Embrapa Solos, Rio de Janeiro, p 212p

    Google Scholar 

  • Ferraz SDB, Vettorazzi CA, Theobald DM (2009) Using indicators of deforestation and land-use dynamics to support conservation strategies: a case study of central Rondônia, Brazil. For Ecol Manage 257:1586–1595. doi:10.1016/j.foreco.2009.01.013

    Article  Google Scholar 

  • Gardner TA (2010) Monitoring forest biodiversity. Improving conservation through ecologically responsible management. Earthscan, London

    Google Scholar 

  • Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA, Sodhi NS (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:561–582. doi:10.1111/j.1461-0248.2009.01294.x

    Article  PubMed  Google Scholar 

  • Gardner TA, Ferreira J, Barlow J, Lees AC, Parry L, Vieira ICG, Berenguer E, Abramovay R, Aleixo A, Andretti C, Aaragao LEO, Araujo I, Souza de Avila W, Bardgett RD, Batistella M, Begotti RA, Beldini T, Ezzine de Blas D, Braga RF, de Lima Braga D, de Brito JG, de Camargo PB, Campos dos Santos F, Campos de Oliveira V, Cordeiro ACN, Cardoso TM, de Carvalho DR, Castelani SA, Chaul JCM, Cerri CE, De Assis Costa F, da Costa CDF, Coudel E, Coutinho AC, Cunha D, D’Antona A, Dezincourt J, Dias-Silva K, Durigan M, Esquerdo JCD, Feres J, de Barros Ferraz SF, de Melo Ferreira AE, Fiorini AC, da Silva LVF, Frazao FS, Garrett R, dos Santos Gomes A, da Silva Gonçalves K, Guerrero JB, Hamada N, Hughes RM, Igliori DC, da Conceição Jesus E, Juen L, Junior M, de Oliveira Junior JMB, de Oliveira Junior RC, Junior CS, Kaufmann P, Korasaki V, Leal CG, Leitao R, Lima N, de Almeida MFL, Lourival R, Louzada J, Mac Nally RC, Marchand S, Maues MM, Moreira FMS, Morsello C, Moura NG, Nessimian J, Nunes S, Oliveira VHF, Pardini R, Pereira HC, Pompeu PS, Ribas CR, Rossetti F, Schmidt FA, da Silva R, da Silva RCV, da Silva TFM, Silveira J, Siqueira JV, de Carvalho TS, Solar RRC, Tancredi NSH, Thomson JR, Torres PC, Vaz-de-Mello FZ, Veiga RCS, Venturieri A, Viana C, Weinhold D, Zanetta R, Zuanon J (2013) A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philos Trans R Soc Lond B 368(1619):20120166. doi:10.1098/rstb.2012.0166

    Article  Google Scholar 

  • Harmon ME, Sexton J (1996) Guidelines for measurements of woody detritus in forest ecosystems. US LTER publication no. 20. US LTER Network Office, University of Washington, Seattle

  • Henriques LMP, Wunderle JM Jr, Oren DC, Willig MR (2008) Efeitos da exploração Madeireira de Baixo impacto sobre uma comunidade de aves de sub-bosque na Floresta Nacional do Tapajós, Pará, Brasil. Acta Amaz 38:267–290

    Article  Google Scholar 

  • Holdsworth AR, Uhl C (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecol Appl 7:713–725. doi:10.1890/1051-0761(1997)007

    Article  Google Scholar 

  • INPE (2014) DEGRAD. Available at: http://www.obt.inpe.br/degrad/. Accessed November 2014

  • Karp DS, Rominger AJ, Zook J, Ranganathan J, Ehrlich PR, Daily GC (2012) Intensive agriculture erodes β-diversity at large scales. Ecol Lett 15:963–970. doi:10.1111/j.1461-0248.2012.01815.x

    Article  PubMed  Google Scholar 

  • Karr JR, James FC (1975) Eco-morphological configurations and convergent evolution in species and communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap Press of Harvard University Press, Cambridge, pp 258–291

    Google Scholar 

  • Kauffman JB, Cummings DL, Ward DE, Babbitt R (1995) Fire in the Brazilian Amazon. 1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia 104:397–408. doi:10.1007/BF00341336

    Article  Google Scholar 

  • Keller M, Palace M, Asner GP, Pereira R, Silva JNM (2004) Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon. Glob Change Biol 10:784–795. doi:10.1111/j.1529-8817.2003.00770.x

    Article  Google Scholar 

  • Laurance SG (2004) Responses of understory rain forest birds to road edges in central Amazonia. Ecol Appl 14:1344–1357. doi:10.1890/03-5194

    Article  Google Scholar 

  • Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin-de Merona JM, Chambers JQ, Gascon C (1999) Relationship between soils and Amazon forest biomass: a landscape-scale study. For Ecol Manage 118:127–138. doi:10.1016/S0378-1127(98)00494-0

    Article  Google Scholar 

  • Laurance WF, Nascimento HE, Laurance SG, Andrade A, Ewers RM, Harms KE, Luizão RCC, Ribeiro JE (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2:e1017. doi:10.1371/journal.pone.0001017

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116. doi:10.1016/j.tree.2013.12.001

    Article  PubMed  Google Scholar 

  • Lees AC, Peres CA (2006) Rapid avifaunal collapse along the Amazonian deforestation frontier. Biol Conserv 133:198–211. doi:10.1016/j.biocon.2006.06.005

    Article  Google Scholar 

  • Lees AC, Peres CA (2008) Avian life history determinants of local extinction risk in a fragmented Neotropical forest landscape. Anim Conserv 11:128–137. doi:10.1111/j.1469-1795.2008.00162.x

    Article  Google Scholar 

  • Lees AC, Peres CA (2009) Gap-crossing movements predict species occurrence in Amazonian forest fragments. Oikos 118:280–290. doi:10.1111/j.1600-0706.2008.16842.x

    Article  Google Scholar 

  • Lees AC, Moura NG, Santana A, Aleixo A, Barlow J, Berenguer E, Ferreira J, Gardner TA (2012) Paragominas: a quantitative baseline inventory of an eastern Amazonian avifauna. Rev Bras Ornitol 20:93–118

    Google Scholar 

  • Lees AC, Moura NG, Andretti CB, Davis BJ, Lopes EV, Henriques LMP, Aleixo A, Barlow J, Ferreira J, Gardner TA (2013) One hundred and thirty-five years of avifaunal surveys around Santarém, central Brazilian Amazon. Rev Bras Ornitol 21:16–57

    Google Scholar 

  • Malhi Y, Gardner TA, Goldsmith GR, Silman MR, Zelazowski P (2014) Tropical forests in the Anthropocene. Annu Rev Env Resour 39:125–159

    Article  Google Scholar 

  • Mason D, Thiollay JM (2001) Tropical forestry and the conservation of Neotropical birds. In: Fimbel RA, Grajal A, Robinson JG (eds) The cutting edge: conserving wildlife in logged tropical forests. Columbia University Press, New York, pp 167–191

    Google Scholar 

  • Mestre LA, Cochrane MA, Barlow J (2013) Long-term changes in bird communities after wildfires in the Central Brazilian Amazon. Biotropica 45:480–488. doi:10.1111/btp.12026

    Article  Google Scholar 

  • Mokross K, Ryder TB, Côrtes MC, Wolfe JD, Stouffer PC (2014) Decay of interspecific avian flock networks along a disturbance gradient in Amazonia. Proc R Soc B 281:20132599. doi:10.1098/rspb.2013.2599

    Article  PubMed  PubMed Central  Google Scholar 

  • Moura NG, Lees AC, Andretti CB, Davis BJ, Solar RR, Aleixo A, Barlow J, Ferreira J, Gardner TA (2013) Avian biodiversity in multiple-use landscapes of the Brazilian Amazon. Biol Conserv 167:339–348. doi:10.1016/j.biocon.2013.08.023

    Article  Google Scholar 

  • Moura NG, Lees AC, Aleixo A, Barlow J, Dantas SM, Ferreira J, Lima MFC, Gardner TA (2014) Two hundred years of local avian extinctions in Eastern Amazonia. Conserv Biol 28:1271–1281. doi:10.1111/cobi.12300

    Article  PubMed  Google Scholar 

  • Nelson BW, Mesquita R, Pereira JL, Souza SGA, Batista GT, Couto LB (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manage 117:149–167. doi:10.1016/S0378-1127(98)00475-7

    Article  Google Scholar 

  • Nemeth E (2004) Measuring the sound pressure level of the song of the screaming Piha Lipaugus vociferans: one of the loudest birds in the world? Bioacoustics 14:225–228. doi:10.1080/09524622.2004.9753527

    Article  Google Scholar 

  • Nepstad D, Verissimo A, Alencar A, Nobre C, Lima E, Lefebvre P, Schlesinger P, Potter C, Moutinho P, Mendoza E, Cochrane M, Brooks V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508. doi:10.1038/19066

    CAS  Article  Google Scholar 

  • Newmark WD, Stanley TR (2011) Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot. Proc Natl Acad Sci USA 108:11488–11493. doi:10.1073/pnas.1104955108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Owens IP, Bennett PM (2001) Quantifying biodiversity: a phenotypic perspective. Conserv Biol 14:1014–1022. doi:10.1046/j.1523-1739.2000.98509.x

    Article  Google Scholar 

  • Pearson DL (1971) Vertical stratification of birds in a tropical dry forest. Condor 73:46–55

    Article  Google Scholar 

  • Pearson DL (1975) The relation of foliage complexity to ecological diversity of three Amazonian bird communities. Condor 77:453–466

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (2002) Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in southern Mexico. Conserv Biol 16:174–182. doi:10.1046/j.1523-1739.2002.99536.x

    Article  Google Scholar 

  • Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18. doi:10.1007/s100219900002

    Article  Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291. doi:10.1126/science.1208742

    CAS  Article  PubMed  Google Scholar 

  • Pomara LY, Ruokolainen K, Tuomisto H, Young KR (2012) Avian composition co-varies with floristic composition and soil nutrient concentration in Amazonian upland forests. Biotropica 44:545–553. doi:10.1111/j.1744-7429.2011.00851.x

    Article  Google Scholar 

  • Powell GVN (1985) Sociobiology and the adaptive significance of interspecific foraging flocks in the Neotropics. Ornithol Monogr 36:713–732. doi:10.2307/40168313

    Article  Google Scholar 

  • Powell LL, Stouffer PC, Johnson EI (2013) Recovery of understory bird movement across the interface of primary and secondary Amazon rainforest. Auk 130:459–468. doi:10.1525/auk.2013.12202

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Remsen JV Jr (2003) Family Furnariidae (ovenbirds). In: del Hoyo J, Elliott A, Christie DA (eds) Handbook of the birds of the world: broadbills to tapaculos, vol 8. Lynx, Barcelona, pp 162–357

    Google Scholar 

  • Robinson SK, Terborgh J (1995) Interspecific aggression and habitat selection by Amazonian birds. J Anim Ecol 64:1–11. doi:10.2307/5822

    Article  Google Scholar 

  • Skutch AF (1961) Life history of the white-tailed Trogon Trogon viridis. Ibis 104:301–313. doi:10.1111/j.1474-919X.1962.tb08660.x

    Article  Google Scholar 

  • Sodhi NS, Posa MRC, Lee TM, Warkentin IG (2008) Perspectives in ornithology: effects of disturbance or loss of tropical rainforest on birds. Auk 125:511–519. doi:10.1525/auk.2008.1708

    Article  Google Scholar 

  • Solar RRC, Barlow J, Ferreira J, Berenguer E, Lees AC, Thomson JR, Louzada J, Maués M, Moura NG, Oliveira VHF, Chaul J, Schoereder JH, Vieira ICG, Mac Nally R, Gardner TA (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118. doi:10.1111/ele.12494

    Article  PubMed  Google Scholar 

  • Souza CM Jr, Siqueira JV, Sales MH, Fonseca AV, Ribeiro JG, Numata I, Cochrane MA, Barber CP, Roberts DA, Barlow J (2013) Ten-year Landsat classification of deforestation and forest degradation in the Brazilian Amazon. Remote Sens 5:5493–5513. doi:10.3390/rs5115493

    Article  Google Scholar 

  • Stotz DF, Fitzpatrick JW, Parker TA III, Moskovits DK (1996) Neotropical birds: ecology and conservation. University of Chicago Press, Chicago

    Google Scholar 

  • Stouffer PC, Bierregaard RO Jr (1995) Use of Amazonian forest fragments by understory insectivorous birds. Ecology 76:2429–2445. doi:10.2307/2265818

    Article  Google Scholar 

  • Stratford JA, Stouffer PC (2013) Microhabitat associations of terrestrial insectivorous birds in Amazonian rainforest and second-growth forests. J Field Ornithol 84:1–12. doi:10.1111/jofo.12000

    Article  Google Scholar 

  • Terborgh J, Robinson SK, Parker TA III, Munn CA, Pierpont N (1990) Structure and organization of an Amazonian forest bird community. Ornithol Monogr 60:213–238. doi:10.2307/1943045

    Google Scholar 

  • Terborgh J, Nuñez-Iturri G, Pitman NC, Valverde FHC, Alvarez P, Swamy V, Pringle EG, Paine CT (2008) Tree recruitment in an empty forest. Ecology 89:1757–1768. doi:10.1890/07-0479.1

    Article  PubMed  Google Scholar 

  • Thiollay JM (1999) Responses of an avian community to rain forest degradation. Biodivers Conserv 8:513–534. doi:10.1023/A:1008912416587

    Article  Google Scholar 

  • Tobias JA, Brawn JD, Brumfield R, Derryberry EP, Kirschel AN, Seddon N (2012) The importance of suboscine birds as study systems in ecology and evolution. Ornitol Neotrop 23:259–272

    Google Scholar 

  • Tscharntke T, Sekercioglu CH, Dietsch TV, Sodhi NS, Hoehn P, Tylianakis JM (2008) Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89:944–951. doi:10.1890/07-0455.1

    Article  PubMed  Google Scholar 

  • Tuomisto H, Ruokolainen K, Kalliola R, Linna A, Danjoy W, Rodriguez Z (1995) Dissecting Amazonian biodiversity. Science 269:63–66. doi:10.1126/science.269.5220.63

    CAS  Article  PubMed  Google Scholar 

  • Tylianakis JM, Klein AM, Lozada T, Tscharntke T (2006) Spatial scale of observation affects α, β and γ diversity of cavity-nesting bees and wasps across a tropical land use gradient. J Biogeogr 33:1295–1304. doi:10.1111/j.1365-2699.2006.01493.x

    Article  Google Scholar 

  • Uezu A, Metzger JP, Vielliard JM (2005) Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol Conserv 123:507–519

    Article  Google Scholar 

  • Uhl C (1998) Perspectives on wildfire in the humid tropics. Conserv Biol 12:942–943. doi:10.1046/j.1523-1739.1998.012005942.x

    Article  Google Scholar 

  • Uhl C, Vieira ICG (1989) Ecological impacts of selective logging in the Brazilian Amazon: a case study from the Paragominas region of the state of Pará. Biotropica 21:98–106. doi:10.2307/2388700

    Article  Google Scholar 

  • Veríssimo A, Barreto P, Mattos M, Tarifa R, Uhl C (1992) Logging impacts and prospects for sustainable forest management in an old Amazonian frontier: the case of Paragominas. For Ecol Manage 55:169–199. doi:10.1016/0378-1127(92)90099-U

    Article  Google Scholar 

  • Wolfe JD, Stouffer PC, Seeholzer GF (2014) Variation in tropical bird survival across longitude and guilds: a case study from the Amazon. Oikos 123:964–970. doi:10.1111/oik.00849

    Article  Google Scholar 

  • Wunderle JM, Henriques LMP, Willig MR (2006) Short-Term Responses of birds to forest gaps and understory: an assessment of reduced-impact logging in a lowland Amazon forest. Biotropica 38:235–255. doi:10.1111/j.1744-7429.2006.00138.x

    Article  Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes, DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann, MC, Chave J (2009) Global wood density database. Dryad. Retrieved from: http://hdl.handle.net/10255/dryad.235

Download references

Acknowledgments

We thank the Instituto Nacional de Ciência e Tecnologia—Biodiversidade e Uso da Terra na Amazônia (CNPq 574008/2008-0), the National Environment Research Council (NE/G000816/1), the Darwin Initiative (17-023), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Lancaster University, Embrapa Amazonia Oriental (SEG 02.08.06.005.00), and the Nature Conservancy for funding, as well as the Nature Conservancy for access to detailed land cover maps of the municipality. We also thank the farmers’ and workers’ unions of Santarém, Belterra and Paragominas and all collaborating private landowners for their support. We thank the Large-scale Biosphere–Atmosphere Experiment in Amazonia for logistic support. We are indebted to support from our field team including C. B. Andretti, W. Ávila, A. S. Costa, F. C. S. Cunha, B. J. Davis, R. M. Freitas, M. Cordeiro, V. C. Nascimento, E. P. Oliveira, G. J. Oliveira, J. M. Oliveira, the late M. A. Nascimento, N. Rosa, A. S. Silva, J. C. Silva and the late E. D. Silva. We also thank I. C. G. Vieira for logistical support and R. C. Solar for the map. J. B. and E. B. were supported by a Natural Environment Research Council grant (NE/K016431/1), J. B. by CNPq 400640/2012-0, T. A. G. by Formas 2013-1571, N. G. M. and A. C. L. thank CNPq for scholarships. A. A. thanks CNPq for a research productivity fellowship. This paper is no. 44 in the Rede Amazônia Sustentável publication series.

Author contribution statement

T. A. G., J. F., J. B., A. C. L. and E. B. conceived and designed the experiments. A. C. L., N. G. M., T. A. G., E. B. and J. R. T. collected and analysed the data. N. G. M. wrote the manuscript, and all authors revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nárgila G. Moura.

Additional information

Communicated by Christopher N. Johnson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 440 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moura, N.G., Lees, A.C., Aleixo, A. et al. Idiosyncratic responses of Amazonian birds to primary forest disturbance. Oecologia 180, 903–916 (2016). https://doi.org/10.1007/s00442-015-3495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3495-z

Keywords

  • Neotropical birds
  • Environmental variables
  • Random forest
  • Degraded forest
  • Biodiversity