Advertisement

Oecologia

, Volume 180, Issue 3, pp 735–747 | Cite as

Secondary bacterial symbiont community in aphids responds to plant diversity

  • Sharon E. ZytynskaEmail author
  • Sebastian T. Meyer
  • Sarah Sturm
  • Wiebke Ullmann
  • Mohsen Mehrparvar
  • Wolfgang W. Weisser
Plant-microbe-animal interactions - Original research

Abstract

Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes.

Keywords

Biodiversity Hamiltonella Multitrophic Regiella Species interactions 

Notes

Acknowledgments

This work was funded by the DFG through the Jena Experiment (FOR 1451, WE 3081). We thank Anne Ebeling and the Jena Experiment gardeners for managing and maintaining the experimental plots.

Author contribution statement

SEZ, WWW and STM designed the experiment, SEZ, MM and WU conducted fieldwork, SS performed the molecular work, WU performed the chemical analyses. SEZ analysed the data and wrote the first draft, with STM and WWW contributing substantially to revisions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2015_3488_MOESM1_ESM.docx (340 kb)
Supplementary material 1 (DOCX 341 kb)

References

  1. Abbas M et al (2014) Plant diversity effects on pollinating and herbivorous insects can be linked to plant stoichiometry. Basic Appl Ecol 15:169–178CrossRefGoogle Scholar
  2. Ahmed MZ, De Barro PJ, Ren S-X, Greeff JM, Qiu B-L (2013) Evidence for horizontal transmission of secondary endosymbionts in the Bemisia tabaci cryptic species complex. PLoS ONE 8:e53084CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allan E et al (2013) A comparison of the strength of biodiversity effects across multiple functions. Oecologia 173:223–237. doi: 10.1007/s00442-012-2589-0 CrossRefPubMedGoogle Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4
  5. Bensadia F, Boudreault S, Guay JF, Michaud D, Cloutier C (2006) Aphid clonal resistance to a parasitoid fails under heat stress. J Insect Physiol 52:146–157CrossRefPubMedGoogle Scholar
  6. Borer ET, Seabloom EW, Tilman D (2012) Plant diversity controls arthropod biomass and temporal stability. Ecol Lett 15:1457–1464. doi: 10.1111/ele.12006 CrossRefPubMedGoogle Scholar
  7. Brady CM, White JA (2013) Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol Entomol 38:433–437. doi: 10.1111/een.12020 CrossRefGoogle Scholar
  8. Bukovinszky T, van Veen F, Jongema Y, Dicke M (2008) Direct and indirect effects of resource quality on food web structure. Science 319:804CrossRefPubMedGoogle Scholar
  9. Caspi-Fluger A et al (2012) Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc R Soc Lond B 279:1791–1796CrossRefGoogle Scholar
  10. Chen DQ, Purcell AH (1997) Occurrence and transmission of facultative endosymbionts in aphids. Curr Microbiol 34:220–225CrossRefPubMedGoogle Scholar
  11. Chen DQ, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid A. kondoi. Entomol Exper Appl 95:315–323. doi: 10.1046/j.1570-7458.2000.00670.x CrossRefGoogle Scholar
  12. Clay K (2014) Defensive symbiosis: a microbial perspective. Funct Ecol 28:293–298. doi: 10.1111/1365-2435.12258 CrossRefGoogle Scholar
  13. Darby A, Douglas A (2003) Elucidation of the transmission patterns of an insect-borne bacterium. Appl Environ Microbiol 69:4403–4407CrossRefPubMedPubMedCentralGoogle Scholar
  14. Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thebault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538CrossRefPubMedGoogle Scholar
  15. Dykstra HR et al (2014) Factors limiting the spread of the protective symbiont Hamiltonella defensa in Aphis craccivora aphids. Appl Environ Microbiol 80:5818–5827CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ebeling A, Klein AM, Schumacher J, Weisser WW, Tscharntke T (2008) How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 117:1808–1815. doi: 10.1111/j.1600-0706.2008.16819.x CrossRefGoogle Scholar
  17. Ebeling A, Klein AM, Weisser WW, Tscharntke T (2012) Multitrophic effects of experimental changes in plant diversity on cavity-nesting bees, wasps, and their parasitoids. Oecologia 169:453–465. doi: 10.1007/s00442-011-2205-8 CrossRefPubMedGoogle Scholar
  18. Ebeling A et al (2014a) Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9:e106529. doi: 10.1371/journal.pone.0106529 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ebeling A et al (2014b) A trait-based experimental approach to understand the mechanisms underlying biodiversity–ecosystem functioning relationships. Basic Appl Ecol 15:229–240CrossRefGoogle Scholar
  20. Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36:533–543CrossRefGoogle Scholar
  21. Ferrari J, Vavre F (2011) Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc Lond B 366:1389–1400CrossRefGoogle Scholar
  22. Ferrari J, West JA, Via S, Godfray HCJ (2012) Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66:375–390. doi: 10.1111/j.1558-5646.2011.01436.x CrossRefPubMedGoogle Scholar
  23. Frantz A, Calcagno V, Mieutzet L, Plantgenest M, Simon JC (2009) Complex trait differentiation between host-populations of the pea aphid Acyrthosiphon pisum (Harris): implications for the evolution of ecological specialisation. Biol J Linn Soc 97:718–727CrossRefGoogle Scholar
  24. Gehrer L, Vorburger C (2012) Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol Lett 8:613–615. doi: 10.1098/rsbl.2012.0144 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hackett SC, Karley AJ, Bennett AE (2013) Unpredicted impacts of insect endosymbionts on interactions between soil organisms, plants and aphids. Proc R Soc Lond B 280:2013. doi: 10.1098/rspb.2013.1275 CrossRefGoogle Scholar
  26. Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JMH, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039CrossRefPubMedGoogle Scholar
  27. Haynes S et al (2003) Diversity of bacteria associated with natural aphid populations. Appl Environ Microbiol 69:7216–7223. doi: 10.1128/aem.69.12.7216-7223.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hector A, Joshi J, Lawler S, Spehn E, Wilby A (2001) Conservation implications of the link between biodiversity and ecosystem functioning. Oecologia 129:624–628CrossRefPubMedGoogle Scholar
  29. Henry LM et al (2013) Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol 23:1713–1717CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hooper D et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  31. Leonardo TE, Muiru GT (2003) Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc R Soc Lond B 270:S209CrossRefGoogle Scholar
  32. Loranger H et al (2014) Invertebrate herbivory increases along an experimental gradient in grassland plant diversity. Oecologia 174:183–193CrossRefPubMedGoogle Scholar
  33. Lukasik P, Guo H, van Asch M, Ferrari J, Godfray HC (2013) Protection against a fungal pathogen conferred by the aphid facultative endosymbionts Rickettsia and Spiroplasma is expressed in multiple host genotypes and species and is not influenced by co-infection with another symbiont. J Evol Biol 26:2654–2661. doi: 10.1111/jeb.12260 CrossRefPubMedGoogle Scholar
  34. McLean A, van Asch M, Ferrari J, Godfray H (2011) Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc R Soc Lond B 278:760CrossRefGoogle Scholar
  35. Mitchell CE (2003) Trophic control of grassland production and biomass by pathogens. Ecol Lett 6:147–155. doi: 10.1046/j.1461-0248.2003.00408.x CrossRefGoogle Scholar
  36. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195CrossRefGoogle Scholar
  37. Moran NA, Dunbar HE (2006) Sexual acquisition of beneficial symbionts in aphids. Proc Natl Acad Sci USA 103:12803–12806CrossRefPubMedPubMedCentralGoogle Scholar
  38. Müller CB, Williams IS, Hardie J (2001) The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecol Entomol 26:330–340CrossRefGoogle Scholar
  39. Nyabuga FN, Outreman Y, Simon JC, Heckel DG, Weisser WW (2010) Effects of pea aphid secondary endosymbionts on aphid resistance and development of the aphid parasitoid Aphidius ervi: a correlative study. Entomol Exp Appl 136:243–253. doi: 10.1111/j.1570-7458.2010.01021.x Google Scholar
  40. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015). vegan: Community Ecology Package. R package version 2.3-0. http://CRAN.R-project.org/package=vegan
  41. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803CrossRefPubMedPubMedCentralGoogle Scholar
  42. Oliver KM, Moran NA, Hunter MS (2006) Costs and benefits of a superinfection of facultative symbionts in aphids. Proc R Soc Lond B 273:1273–1280CrossRefGoogle Scholar
  43. Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc R Soc Lond B 275:293CrossRefGoogle Scholar
  44. Oliver KM, Smith AH, Russell JA (2014) Defensive symbiosis in the real world—advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 28:341–355. doi: 10.1111/1365-2435.12133 CrossRefGoogle Scholar
  45. Omacini M, Chaneton EJ, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host–parasite interaction webs. Nature 409:78–81CrossRefPubMedGoogle Scholar
  46. Pérez-Brocal V et al (2006) A small microbial genome: the end of a long symbiotic relationship? Science 314:312–313CrossRefPubMedGoogle Scholar
  47. Petermann JS, Muller CB, Roscher C, Weigelt A, Weisser WW, Schmid B (2010a) Plant species loss affects life-history traits of aphids and their parasitoids. PLoS ONE 5:e12053. doi: 10.1371/journal.pone.0012053 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Petermann JS, Müller CB, Weigelt A, Weisser WW, Schmid B (2010b) Effect of plant species loss on aphid–parasitoid communities. J Anim Ecol 79:709–720. doi: 10.1111/j.1365-2656.2010.01674.x CrossRefPubMedGoogle Scholar
  49. Pettersson J, Tjallingii WF, Hardie J (2007) Host plant selection and feeding. In: VanEmden HF, Harrington R (eds) Aphids as crop pests. CABI, Wallingford, pp 87–113Google Scholar
  50. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2015) nlme: linear and nonlinear mixed effects models. R package version 3:1–120Google Scholar
  51. Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 51:309–330CrossRefPubMedGoogle Scholar
  52. R Core Development Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  53. Roscher C et al (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121CrossRefGoogle Scholar
  54. Ruijven J, De Deyn GB, Berendse F (2003) Diversity reduces invasibility in experimental plant communities: the role of plant species. Ecol Lett 6:910–918CrossRefGoogle Scholar
  55. Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc Lond B 273:603–610CrossRefGoogle Scholar
  56. Russell J, Latorre A, Sabater-Muñoz B, Moya A, Moran N (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 12:1061–1075CrossRefPubMedGoogle Scholar
  57. Russell JA et al (2013) Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol Ecol 22:2045–2059. doi: 10.1111/mec.12211 CrossRefPubMedGoogle Scholar
  58. Rzanny M, Voigt W (2012) Complexity of multitrophic interactions in a grassland ecosystem depends on plant species diversity. J Anim Ecol 81:614–627. doi: 10.1111/j.1365-2656.2012.01951.x CrossRefPubMedGoogle Scholar
  59. Rzanny M, Kuu A, Voigt W (2013) Bottom–up and top–down forces structuring consumer communities in an experimental grassland. Oikos 122:967–976. doi: 10.1111/j.1600-0706.2012.00114.x CrossRefGoogle Scholar
  60. Sandström JP, Russell JA, White JP, Moran NA (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 10:217–228CrossRefPubMedGoogle Scholar
  61. Scarborough CL, Ferrari J, Godfray H (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781CrossRefPubMedGoogle Scholar
  62. Scherber C et al (2006) Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia 147:489–500CrossRefPubMedGoogle Scholar
  63. Scherber C et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556. doi: 10.1038/nature09492 CrossRefPubMedGoogle Scholar
  64. Smith AH et al (2015) Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Mol Ecol 24:1135–1149. doi: 10.1111/mec.13095 CrossRefPubMedGoogle Scholar
  65. Su Q, Oliver KM, Xie W, Wu Q, Wang S, Zhang Y (2015) The whitefly-associated facultative symbiont Hamiltonella defensa suppresses induced plant defenses in tomato. Funct Ecol. doi: 10.1111/1365-2435.12405 Google Scholar
  66. Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524CrossRefPubMedGoogle Scholar
  67. Thao ML, Baumann P (2004) Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr Microbiol 48:140–144CrossRefPubMedGoogle Scholar
  68. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720CrossRefGoogle Scholar
  69. Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol 11:2123–2135. doi: 10.1046/j.1365-294X.2002.01606.x CrossRefPubMedGoogle Scholar
  70. Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989CrossRefPubMedGoogle Scholar
  71. Tsuchida T et al (2010) Symbiotic bacterium modifies aphid body color. Science 330:1102–1104CrossRefPubMedGoogle Scholar
  72. Vorburger C, Gouskov A (2011) Only helpful when required: a longevity cost of harbouring defensive symbionts. J Evol Biol 24:1611–1617. doi: 10.1111/j.1420-9101.2011.02292.x CrossRefPubMedGoogle Scholar
  73. Vorburger C, Ganesanandamoorthy P, Kwiatkowski M (2013) Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol Evol 3:706–713. doi: 10.1002/ece3.491 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wagner SM et al (2015) Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct Ecol. doi: 10.1111/1365-2435.12459 Google Scholar
  75. Wulff JA, White JA (2015) The endosymbiont Arsenophonus provides a general benefit to soybean aphid (Hemiptera: Aphididae) regardless of host plant resistance (Rag). Environ Entomol 44:574–581CrossRefPubMedGoogle Scholar
  76. Wulff JA, Buckman KA, Wu K, Heimpel GE, White JA (2013) The endosymbiont Arsenophonus is widespread in soybean aphid, Aphis glycines, but does not provide protection from parasitoids or a fungal pathogen. PLoS ONE 8:e62145. doi: 10.1371/journal.pone.0062145 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zytynska SE, Preziosi RF (2011) Genetic interactions influence host preference and performance in a plant-insect system. Evol Ecol 25:1321–1333CrossRefGoogle Scholar
  78. Zytynska SE, Weisser W (2015) The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol (in press)Google Scholar
  79. Zytynska SE, Franz L, Hurst B, Johnson A, Preziosi RF, Rowntree J (2014) Host plant genotypic diversity and community genetic interactions mediate aphid spatial distribution. Ecol Evol 4:121–131CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sharon E. Zytynska
    • 1
    Email author
  • Sebastian T. Meyer
    • 1
  • Sarah Sturm
    • 1
  • Wiebke Ullmann
    • 2
  • Mohsen Mehrparvar
    • 1
    • 3
  • Wolfgang W. Weisser
    • 1
  1. 1.Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences WeihenstephanTechnische Universität MünchenFreisingGermany
  2. 2.Department of EcologyUniversity of BremenBremenGermany
  3. 3.Department of Biodiversity, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran

Personalised recommendations