, Volume 180, Issue 1, pp 103–110 | Cite as

Secondary compounds enhance flammability in a Mediterranean plant

  • J. G. PausasEmail author
  • G. A. Alessio
  • B. Moreira
  • J. G. Segarra-Moragues
Population ecology - Original research


Some plant secondary compounds, such as terpenes, are very flammable; however, their role in enhancing plant flammability is poorly understood and often neglected in reviews on plant chemical ecology. This is relevant as there is growing evidence that flammability-enhancing traits are adaptive in fire-prone ecosystems. We analyzed the content of monoterpenes and sesquiterpenes, performed flammability tests and genotyped microsatellite markers, all in the same individuals of Rosmarinus officinalis, to evaluate the link between the content of terpenes, flammability and the genetic similarity among individuals. The results suggest that terpenes enhance flammability in R. officinalis, and that variability in flammability among individuals is likely to have a genetic basis. Overall our results suggest that the capacity to produce and store terpenes can be considered a flammability-enhancing trait and could have an adaptive value in fire-prone ecosystems.


Volatile organic compounds Terpenes Fire ecology Secondary metabolism Rosmarinus officinalis 



This work was funded by the VIRRA and TREVOL projects (CGL2009-12048/BOS, CGL2012-39938-C02-01) from the Spanish government. We thank G. Corcobado for collaborating in the field and laboratory work, S. Donat for the help in the genetic analyses and the IVIA Department of Citriculture for providing standards. B. M. was supported by a grant from the Portuguese government (Fundação para a Ciência e a Tecnologia; SFRH/BPD/90277/2012), G. A. A. by a Juan de la Cierva (JDC-2009-5067) post-doc from the Spanish Ministerio de Ciencia e Innovación (MICINN), and J. G. S.-M. by a Ramón y Cajal postdoc also from MICINN.

Author contribution statement

J. G. P. conceived the idea, performed the statistical analysis and wrote the first version of the manuscript. G. A. A. performed the flammability tests and analyzed the terpene contents. B. M. contributed to the design of the experiments and to the flammability tests. J. G. S.-M. performed the genetic analyses. All authors contributed to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

We declare no conflict of interest.

Supplementary material

442_2015_3454_MOESM1_ESM.pdf (603 kb)
Relationship between flammability (moisture-corrected time-to-ignition) and the content of four common terpenes in Rosmarinus officinalis (camphene, para-cymene, borneol, limonene). (PDF 603 kb)
442_2015_3454_MOESM2_ESM.csv (6 kb)
Flammability, terpene concentration and microsatellite data. (CSV 6 kb)


  1. Alessio GA, Peñuelas J, Llusià J, Ogaya R, Estiarte M, De Lillis M (2008) Influence of water and terpenes on flammability in some dominant Mediterranean species. Int J Wildland Fire 17:274–286. doi: 10.1071/WF07038 CrossRefGoogle Scholar
  2. Baluška F (ed) (2013) Long-distance systemic signaling and communication in plants. Springer, BerlinGoogle Scholar
  3. Belcher CM et al (2010) Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nat Geosci 3:426–429. doi: 10.1038/ngeo871 CrossRefGoogle Scholar
  4. Boix YF, Victório CP, Defaveri ACA, Arruda RCO, Sato A, Lage CLS (2011) Glandular trichomes of Rosmarinus officinalis L.: anatomical and phytochemical analyses of leaf volatiles. Plant Biosyst 145:848–856. doi: 10.1080/11263504.2011.584075 CrossRefGoogle Scholar
  5. Bond WJ, Midgley JJ (1995) Kill thy neighbour: an individualistic argument for the evolution of flammability. Oikos 73:79–85. doi: 10.2307/3545728 CrossRefGoogle Scholar
  6. Bond WJ, Scott AC (2010) Fire and the spread of flowering plants in the Cretaceous. New Phytol 188:1137–1150. doi: 10.1111/j.1469-8137.2010.03418.x PubMedCrossRefGoogle Scholar
  7. Brachi B, Morris G, Borevitz J (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12:232. doi: 10.1186/gb-2011-12-10-232 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Castells E, Roumet C, Peñuelas J, Roy J (2002) Intraspecific variability of phenolic concentrations and their responses to elevated CO2 in two Mediterranean perennial grasses. Environ Exp Bot 47:205–216. doi: 10.1016/S0098-8472(01)00123-X CrossRefGoogle Scholar
  9. Chetehouna K, Barboni T, Zarguili I, Leoni E, Simeoni A, Fernandez Pello AC (2009) Investigation on the emission of volatile organic compounds from heated vegetation and their potential to cause an accelerating forest fire. Combust Sci Technol 181:1273–1288CrossRefGoogle Scholar
  10. Chetehouna K, Courty L, Garo JP, Viegas DX, Fernandez-Pello C (2014) Flammability limits of biogenic volatile organic compounds emitted by fire-heated vegetation (Rosmarinus officinalis) and their potential link with accelerating forest fires in canyons: a Froude-scaling approach. J Fire Sci 32:316–327. doi: 10.1177/0734904113514810 CrossRefGoogle Scholar
  11. Cornelissen JHC et al (2003) Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi: 10.1071/BT02124 CrossRefGoogle Scholar
  12. De Lillis M, Bianco PM, Loreto F (2009) The influence of leaf water content and isoprenoids on flammability of some Mediterranean woody species. Int J Wildland Fire 18:203–212. doi: 10.1071/WF07075 CrossRefGoogle Scholar
  13. Gagnon PR, Passmore HA, Platt WJ, Myers JA, Paine CET, Harms KE (2010) Does pyrogenicity protect burning plants? Ecology 91:3481–3486. doi: 10.1890/10-0291.1 PubMedCrossRefGoogle Scholar
  14. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414. doi: 10.1038/nchembio.2007.5 PubMedCrossRefGoogle Scholar
  15. Gutiérrez JP, Royo LJ, Álvarez I, Goyache F (2005) MolKin v2.0: a computer program for genetic analysis of populations using molecular coancestry information. J Hered 96:718–721. doi: 10.1093/jhered/esi118 PubMedCrossRefGoogle Scholar
  16. Hardy OJ, Vekemans X (2002) SPAGEDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi: 10.1046/j.1471-8286.2002.00305.x CrossRefGoogle Scholar
  17. He T, Lamont BB, Downes KS (2011) Banksia born to burn. New Phytol 191:184–196. doi: 10.1111/j.1469-8137.2011.03663.x PubMedCrossRefGoogle Scholar
  18. Heil M, Karban R (2010) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144. doi: 10.1016/j.tree.2009.09.010 PubMedCrossRefGoogle Scholar
  19. Karban R, Wetzel WC, Shiojiri K, Ishizaki S, Ramirez SR, Blande JD (2014) Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol 204:380–385. doi: 10.1111/nph.12887 PubMedCrossRefGoogle Scholar
  20. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, CambridgeGoogle Scholar
  21. Laland KN, Odling-Smee FJ, Feldman MW (1999) Evolutionary consequences of niche construction and their implications for ecology. Proc Natl Acad Sci USA 96:10242–10247. doi: 10.1073/pnas.96.18.10242 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Langella O (2000) Populations (logiciel de genétique des populations). CNRS, FranceGoogle Scholar
  23. Llusià J, Peñuelas J (2000) Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am J Bot 87:133–140. doi: 10.2307/2656691 PubMedCrossRefGoogle Scholar
  24. Midgley JJ (2013) Flammability is not selected for, it emerges. Aust J Bot 61:102–106. doi: 10.1071/BT12289 CrossRefGoogle Scholar
  25. Moore BD, Andrew RL, Külheim C, Foley WJ (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750. doi: 10.1111/nph.12526 PubMedCrossRefGoogle Scholar
  26. Moreira B, Tormo J, Estrelles E, Pausas JG (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann Bot 105:627–635. doi: 10.1093/aob/mcq017 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Moreira B, Castellanos MC, Pausas JG (2014) Genetic component of flammability variation in a Mediterranean shrub. Mol Ecol 23:1213–1223. doi: 10.1111/mec.12665 PubMedCrossRefGoogle Scholar
  28. Mutch RW (1970) Wildland fires and ecosystems—a hypothesis. Ecology 51:1046–1051CrossRefGoogle Scholar
  29. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170. doi: 10.1007/bf02300753 PubMedCrossRefGoogle Scholar
  30. Ormeño E, Fernandez C, Mévy J-P (2007) Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry 68:840–852. doi: 10.1016/j.phytochem.2006.11.033 PubMedCrossRefGoogle Scholar
  31. Ormeño E et al (2009) The relationship between terpenes and flammability of leaf litter. For Ecol Manage 257:471–482. doi: 10.1016/j.foreco.2008.09.019 CrossRefGoogle Scholar
  32. Ormeño E, Goldstein A, Niinemets Ü (2011) Extracting and trapping biogenic volatile organic compounds stored in plant species. Trends Anal Chem 30:978–989. doi: 10.1016/j.trac.2011.04.006 CrossRefGoogle Scholar
  33. Owens MK, Lin C-D, Taylor CA Jr, Whisenant SG (1998) Seasonal patterns of plant flammability and monoterpenoid content in Juniperus ashei. J Chem Ecol 24:2115–2129. doi: 10.1023/A:1020793811615 CrossRefGoogle Scholar
  34. Paula S, Arianoutsou M, Kazanis D, Tavsanoglu C, Lloret F, Buhk C, Ojeda F, Luna B, Moreno JM, Rodrigo A, Espelta JM, Palacio S, Fernández-Santos B, Fernandes PM, Pausas JG (2009) Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420. doi: 10.1890/08-1309.1 CrossRefGoogle Scholar
  35. Pausas JG (2015) Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci 20:318–324. doi: 10.1016/j.tplants.2015.03.001 PubMedCrossRefGoogle Scholar
  36. Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Change 110:215–226. doi: 10.1007/s10584-011-0060-6 CrossRefGoogle Scholar
  37. Pausas JG, Keeley JE (2014) Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol 204:55–65. doi: 10.1111/nph.12921 PubMedCrossRefGoogle Scholar
  38. Pausas JG, Moreira B (2012) Flammability as a biological concept. New Phytol 194:610–613. doi: 10.1111/j.1469-8137.2012.04132.x PubMedCrossRefGoogle Scholar
  39. Pausas JG, Alessio GA, Moreira B, Corcobado G (2012) Fires enhance flammability in Ulex parviflorus. New Phytol 193:18–23. doi: 10.1111/j.1469-8137.2011.03945.x PubMedCrossRefGoogle Scholar
  40. Peñuelas J, Estiarte M (1998) Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol Evol 13:20–24. doi: 10.1016/S0169-5347(97)01235-4 PubMedCrossRefGoogle Scholar
  41. Peñuelas J, Llusià J (2001) The complexity of factors driving volatile organic compound emissions by plants. Biol Plant 44:481–487. doi: 10.1023/A:1013797129428 CrossRefGoogle Scholar
  42. Pérez-Harguindeguy N et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234. doi: 10.1071/BT12225 CrossRefGoogle Scholar
  43. Pratt JD, Keefover-Ring K, Liu LY, Mooney KA (2014) Genetically based latitudinal variation in Artemisia californica secondary chemistry. Oikos 123:953–963. doi: 10.1111/oik.01156 CrossRefGoogle Scholar
  44. Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185. doi: 10.1017/S0016672300033620 CrossRefGoogle Scholar
  45. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Res 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefGoogle Scholar
  46. Sampedro L, Moreira X, Llusia J, Peñuelas J, Zas R (2010) Genetics, phosphorus availability, and herbivore-derived induction as sources of phenotypic variation of leaf volatile terpenes in a pine species. J Exp Bot 61:4437–4447PubMedPubMedCentralCrossRefGoogle Scholar
  47. Schwilk DW (2003) Flammability is a niche-construction trait: canopy architecture affects fire intensity. Am Nat 162:725–733. doi: 10.1086/379351 PubMedCrossRefGoogle Scholar
  48. Schwilk DW, Caprio AC (2011) Scaling from leaf traits to fire behaviour: community composition predicts fire severity in a temperate forest. J Ecol 99:970–980. doi: 10.1111/j.1365-2745.2011.01828.x CrossRefGoogle Scholar
  49. Segarra-Moragues J, Gleiser G (2009) Isolation and characterisation of di and tri nucleotide microsatellite loci in Rosmarinus officinalis (Lamiaceae), using enriched genomic libraries. Conserv Genet 10:571–575. doi: 10.1007/s10592-008-9572-7 CrossRefGoogle Scholar
  50. Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University Press, OxfordCrossRefGoogle Scholar
  51. Thompson J et al (2013) Evolution of a genetic polymorphism with climate change in a Mediterranean landscape. Proc Natl Acad Sci USA 110:2893–2897. doi: 10.1073/pnas.1215833110 PubMedPubMedCentralCrossRefGoogle Scholar
  52. White CS (1994) Monoterpenes: their effects on ecosystem nutrient cycling. J Chem Ecol 20:1381–1406. doi: 10.1007/BF02059813 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. G. Pausas
    • 1
    Email author
  • G. A. Alessio
    • 1
  • B. Moreira
    • 1
    • 2
  • J. G. Segarra-Moragues
    • 1
  1. 1.CIDE-CSICMontcadaSpain
  2. 2.Centro de Ecologia FuncionalUniversity of CoimbraCoimbraPortugal

Personalised recommendations