Skip to main content
Log in

Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38 %) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53 %) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 –N + NH4 +–N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison S, Wallenstein M, Bradford M (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340. doi:10.1038/NGEO846

    Article  CAS  Google Scholar 

  • Alvarez R, Santanatoglia OJ, Garcîa R (1995) Effect of temperature on soil microbial biomass and its metabolic quotient in situ under different tillage systems. Biol Fertil Soils 19:227–230. doi:10.1007/BF00336164

    Article  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235. doi:10.1007/s00442-004-1519-1

    Article  PubMed  Google Scholar 

  • Báez S, Fargione J, Moore DI, Collins SL, Gosz JR (2007) Atmospheric nitrogen deposition in the northern Chihuahuan desert: temporal trends and potential consequences. J Arid Environ 68:640–651. doi:10.1016/j.jaridenv.2006.06.011

    Article  Google Scholar 

  • Bell C, McIntyre N, Cox S, Tissue D, Zak J (2008) Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan Desert Grassland. Microb Ecol 56:153–167. doi:10.1007/s00248-007-9333-z

    Article  PubMed  Google Scholar 

  • Bell CW, Acosta-Martinez V, McIntyre NE, Cox S, Tissue D, Zak J (2009) Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan Desert grassland. Microb Ecol 58:827–842. doi:10.1007/S00248-009-9529-5

    Article  PubMed  CAS  Google Scholar 

  • Biederbeck VO, Campbell CA (1973) Soil microbial activity as influenced by temperature trends and fluctuations. Can J Soil Sci 53:363–376

    Article  Google Scholar 

  • Bradford MA (2013) Thermal adaptation of decomposer communities in warming soils. Front Microbiol 4:1–16. doi:10.3389/fmicb.2013.00333

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigaton and the release of soil nitrogen—a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85)90144-0

    Article  CAS  Google Scholar 

  • Clark J, Campbell J, Grizzle H, Acosta-Martínez V, Zak J (2009) Soil Microbial community response to drought and precipitation variability in the Chihuahuan Desert. Microb Ecol 57:248–260. doi:10.1007/S00248-008-9475-7

    Article  PubMed  Google Scholar 

  • Cochran RA, Rives JL (1985) Soil survey of Big Bend National Park: part of Brewster County. USDA-SCS in cooperation with the United States Department of Interior, National Park Service and Texas Agricultural Experiment Station. U.S. Government Printing Office, Washington DC

    Google Scholar 

  • Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–420. doi:10.1111/j.1365-2745.2008.01362.x

    Article  Google Scholar 

  • Dijkstra P, Thomas SC, Heinrich PL, Koch GW, Schwartz E, Hungate BA (2011) Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol Biochem 43:2023–2031. doi:10.1016/j.soilbio.2011.05.018

    Article  CAS  Google Scholar 

  • Dion P, Nautiyal CS (2008) Microbiology of extreme soils. Springer, Berlin

    Book  Google Scholar 

  • Gutschick VP, Snyder K (2006) Water and energy balances within the Jornada Basin. In: Havstad KM, Huenneke LF, Schlesinger WH (eds) Structure and Function of a Chihuahuan Desert Ecosystem, The Jornada Basin long-term ecological research site. Oxford University Press, New York, pp 176–188

    Google Scholar 

  • Hadley N (1970) Micrometeorology and energy exchange in two desert arthropods. Ecology 51:434–444

    Article  Google Scholar 

  • Herrmann R, Stottlemyer R, Zak JC, Edmonds RL, Van Miegroet H (2000) Biogeochemical effects of global change on US national parks. J Am Water Resour Assoc 36:337–346. doi:10.1111/j.1752-1688.2000.tb04272.x

    Article  CAS  Google Scholar 

  • Herron PM, Stark JM, Holt C, Hooker T, Cardon ZG (2009) Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas. Soil Biol Biochem 41:1262–1269. doi:10.1016/j.soilbio.2009.03.010

    Article  CAS  Google Scholar 

  • Jenkinson DS (1988) Determination of microbial biomass carbon and nitrogen in soil. In: Wilson J (ed) Adv nitrogen cycl agric ecosyst. CAB International, Wallingford, pp 368–386

    Google Scholar 

  • Jin VL, Evans RD (2007) Elevated CO2 increases microbial carbon substrate use and nitrogen cycling in Mojave Desert soils. Glob Change Biol 13:452–465

    Article  Google Scholar 

  • Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the k(EC) value. Soil Biol Biochem 28:25–31. doi:10.1016/0038-0717(95)00102-6

    Article  CAS  Google Scholar 

  • Jones DL (1999) Amino acid biodegradation and its potential effects on organic nitrogen capture by plants. Soil Biol Biochem 31:613–622. doi:10.1016/S0038-0717(98)00167-9

    Article  CAS  Google Scholar 

  • Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999. doi:10.1016/j.soilbio.2005.08.012

    Article  CAS  Google Scholar 

  • Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126

    Article  Google Scholar 

  • McCalley CK, Sparks JP (2009) Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326:837–840. doi:10.1126/science.1178984

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS (1989) Temperature, water availability, and nutrient levels at various soil depths—consequences for shallow-rooted desert succulents, including nurse plant effects. Am J Bot 76:1486–1492

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Nunan N, Morgan MA, Herlihy M (1998) Ultraviolet absorbance (280 nm) of compounds released from soil during chloroform fumigation as an estimate of the microbial biomass. Soil Biol Biochem 30:1599–1603. doi:10.1016/S0038-0717(97)00226-5

    Article  CAS  Google Scholar 

  • Ogle K, Barber JJ, Barron-Gafford GA, Bentley LP, Young JM, Huxman TE, Loik ME, Tissue DT (2015) Quantifying ecological memory in plant and ecosystem processes. Ecol Lett 18:221–235. doi:10.1111/ele.12399

    Article  PubMed  Google Scholar 

  • Parker SS, Schimel JP (2011) Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland. Appl Soil Ecol 48:185–192. doi:10.1016/j.apsoil.2011.03.007

    Article  Google Scholar 

  • Patrick LD, Ogle K, Bell CW, Zak J, Tissue D (2009) Physiological responses of two contrasting desert plant species to precipitation variability are differentially regulated by soil moisture and nitrogen dynamics. Glob Change Biol 15:1214–1229. doi:10.1111/j.1365-2486.2008.01750.x

    Article  Google Scholar 

  • Peterjohn WT, Schlesinger WH (1990) Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10:67–79

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2012) nlme: Linear and nonlinear mixed effects models. R package version 3.1-104

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:654. doi:10.1038/nrmicro2854

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Reynolds JF, Kemp PR, Ogle K, Fernandez RJ (2004) Modifying the “pulse-reserve” paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141:194–210. doi:10.1007/s00442-004-1524-4

    Article  PubMed  Google Scholar 

  • Robertson GP, Klingensmith KM, Klug MJ, Paul EA, Crum JR, Ellis BG (1997) Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecol Appl 7:158–170. doi:10.1890/1051-0761(1997)007[0158:SRMAAP]2.0.CO;2)

  • Robertson TR, Bell CW, Zak JC, Tissue DT (2009) Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland. New Phytol 181:230–242. doi:10.1111/j.1469-8137.2008.02643.x

    Article  PubMed  Google Scholar 

  • Russell JB (2007) The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol 13:1–11. doi:10.1159/000103591

    Article  PubMed  CAS  Google Scholar 

  • Schimel DS, Parton WJ, Kittel TGF, Ojima DS, Cole CV (1990) Grassland biogeochemistry—links to atmospheric processes. Clim Change 17:13–25. doi:10.1007/bf00148998

    Article  Google Scholar 

  • Shaver GR, Billings WD, Chapin FS, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB (1992) Global change and the carbon balance of arctic ecosystems. Bioscience 42:433–441. doi:10.2307/1311862

    Article  Google Scholar 

  • Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16:930–939. doi:10.1111/ele.12113

    Article  PubMed  Google Scholar 

  • Stursova M, Crenshaw CL, Sinsabaugh RL (2006) Microbial responses to long-term N deposition in a semiarid grassland. Microb Ecol 51:90–98. doi:10.1007/s00248-005-5156-y

    Article  PubMed  Google Scholar 

  • Treseder KK, Schimel JP, Garcia MO, Whiteside MD (2010) Slow turnover and production of fungal hyphae during a Californian dry season. Soil Biol Biochem 42:1657–1660. doi:10.1016/j.soilbio.2010.06.005

    Article  CAS  Google Scholar 

  • Van Gestel NC, Schwilk DW, Tissue DT, Zak JC (2011) Reductions in daily soil temperature variability increase soil microbial biomass C and decrease soil N availability in the Chihuahuan Desert: potential implications for ecosystem C and N fluxes. Glob Change Biol 17:3564–3576. doi:10.1111/j.1365-2486.2011.02479.x

    Article  Google Scholar 

  • Van Gestel NC, Reischke S, Bååth E (2013) Temperature sensitivity of bacterial growth in a hot desert soil with large temperature fluctuations. Soil Biol Biochem 65:180–185. doi:10.1016/j.soilbio.2013.05.016

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett 32:L23822. doi:10.1029/2005GL024379

    Article  Google Scholar 

  • Xiang S-R, Doyle A, Holden PA, Schimel JP (2008) Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–2289. doi:10.1016/j.soilbio.2008.05.004

    Article  CAS  Google Scholar 

  • Yuste JC, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S (2007) Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob Change Biol 13:2018–2035. doi:10.1111/j.1365-2486.2007.01415.x

    Article  Google Scholar 

  • Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL (2007) Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 154:349–359. doi:10.1007/s00442-007-0836-6

    Article  PubMed  Google Scholar 

  • Zhou L, Dickinson RE, Dai A, Dirmeyer P (2009) Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: comparing multi-model simulations with observations. Clim Dyn 35:1289–1307. doi:10.1007/s00382-009-0644-2

    Article  Google Scholar 

  • Zhu BA, Cheng WX (2011) Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbon decomposition. Soil Biol Biochem 43:866–869. doi:10.1016/j.soilbio.2010.12.021

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. V. Acosta-Martínez (USDA-ARS), Dr. D. Schwilk, Dr. C. Bell, Dr. K. Schmidt, Dr. H. Grizzle, J. Cotton, H. Metzler, L. Allen, C. Lewis, J. Stickles, P. Ortiz, K. Haralson, and S. Lockwood, and Dr. J. Sirotnak (NPS, Big Bend National Park). Funding was provided by NPS (JCZ and DTT), Project Number PMIS-83909, a USGS Global Climate Change Small Watershed Project Grant (JCZ), Project Number RW032, US Department of Energy National Institute for Climate Change Research Grant (DTT), an Achievement Rewards for College Scientists Foundation scholarship (NCvG), and the Texas Tech University Association of Biologists (NCvG). We are also grateful for insightful comments from Dr. Russell Monson and two anonymous reviewers.

Author contribution statement

NCvG and JCZ conceived and designed the experiments. NCvG and ND conducted the field experiment and laboratory analyses. NCvG analyzed the data and created the figures. NCvG, DTT and JCZ wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasja C. van Gestel.

Additional information

Communicated by Jason P. Kaye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Gestel, N.C., Dhungana, N., Tissue, D.T. et al. Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem. Oecologia 180, 265–277 (2016). https://doi.org/10.1007/s00442-015-3452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3452-x

Keywords

Navigation