, Volume 180, Issue 1, pp 169–179 | Cite as

Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest

  • Bodil N. Cass
  • Anna G. Himler
  • Elizabeth C. Bondy
  • Jacquelyn E. Bergen
  • Sierra K. Fung
  • Suzanne E. Kelly
  • Martha S. HunterEmail author
Plant-microbe-animal interactions - Original research


Inherited bacterial symbionts are common in arthropods and can have strong effects on the biology of their hosts. These effects are often mediated by host ecology. The Rickettsia symbiont can provide strong fitness benefits to its insect host, Bemisia tabaci, under laboratory and field conditions. However, the frequency of the symbiont is heterogeneous among field collection sites across the USA, suggesting that the benefits of the symbiont are contingent on additional factors. In two whitefly genetic lines collected from the same location, we tested the effect of Rickettsia on whitefly survival after heat shock, on whitefly competitiveness at different temperatures, and on whitefly competitiveness at different starting frequencies of Rickettsia. Rickettsia did not provide protection against heat shock nor affect the competitiveness of whiteflies at different temperatures or starting frequencies. However, there was a strong interaction between Rickettsia infection and whitefly genetic line. Performance measures indicated that Rickettsia was associated with significant female bias in both whitefly genetic lines, but in the second whitefly genetic line it conferred no significant fitness benefits nor conferred any competitive advantage to its host over uninfected whiteflies in population cages. These results help to explain other reports of variation in the phenotype of the symbiosis. Furthermore, they demonstrate the complex nature of these close symbiotic associations and the need to consider these interactions in the context of host population structure.


Bemisia tabaci Temperature Frequency dependence Genetic line Heat shock 



This research was supported by the United States Department of Agriculture AFRI grant 2010-03752 to MSH, research Grant No. US-4304-10 R from the United States–Israel Binational Agricultural Research and Development Fund (to MSH and Einat Zchori-Fein), National Science Foundation Grants DEB-1020460 (to MSH and AGH) and IOS-1256905 (to MSH and Stephan Schmitz-Esser), a National Institutes of Health training grant 1K 12 GM00708 (to AGH), and a Center for Insect Science Research Award (to BNC). We thank Nick Dowdy, Brennan Zehr, Jimmy Conway, and Ling Zhong for help with the experimental setup and whitefly rearing, and Mohammad Torabi for statistical advice.

Author contribution statement

BNC, AGH, and MSH conceived and designed the experiments. BNC, AGH, ECB, JEB, SEK, and SKF performed the experiments. BNC, AGH, ECB, and MSH analyzed the data. BNC, AGH, and MSH wrote the manuscript.


  1. Asiimwe P, Kelly SE, Hunter MS (2014) Symbiont infection affects whitefly dynamics in the field. Basic Appl Ecol 15:507–515. doi: 10.1016/j.baae.2014.08.005 CrossRefGoogle Scholar
  2. Bordenstein SR, Uy JJ, Werren JH (2003) Host genotype determines cytoplasmic incompatibility type in the haplodiploid genus Nasonia. Genetics 164:223–233PubMedPubMedCentralGoogle Scholar
  3. Boyle L, O’Neill SL, Robertson HM, Karr TL (1993) Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260:1796–1799PubMedCrossRefGoogle Scholar
  4. Brelsfoard CL, Séchan Y, Dobson SL (2008) Interspecific hybridization yields strategy for South Pacific filariasis vector elimination. PLoS Negl Trop Dis 2:e129. doi: 10.1371/journal.pntd.0000129
  5. Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217. doi: 10.1016/0169-5347(94)90246-1 PubMedCrossRefGoogle Scholar
  6. Brown PW (1998) A model to estimate cotton canopy temperature in the desert southwest. In: Proc Beltwide Cotton Conf, San Diego, CA, USA, 5–9 Jan 1998Google Scholar
  7. Brumin M, Kontsedalov S, Ghanim M (2011) Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci 18:57–66. doi: 10.1111/j.1744-7917.2010.01396.x CrossRefGoogle Scholar
  8. Burke GR, McLaughlin HJ, Simon JC, Moran NA (2010) Dynamics of a recurrent Buchnera mutation that affects thermal tolerance of pea aphid hosts. Genetics 186:367–372. doi: 10.1534/genetics.110.117440 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Butler GD, Henneberry TJ, Clayton TE (1983) Bemisia tabaci (Homoptera, Aleyrodidae)—development, oviposition, and longevity in relation to temperature. Ann Entomol Soc Am 76:310–313. doi: 10.1093/aesa/76.2.310 CrossRefGoogle Scholar
  10. Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E, Hunter MS, Zchori-Fein E (2012) Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc Biol Sci 279:1791–1796. doi: 10.1098/rspb.2011.2095 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cass BN, Yallouz R, Bondy EC, Mozes-Daube N, Horowitz AR, Kelly SE, Zchori-Fein E, Hunter MS (2015) Dynamics of the endosymbiont Rickettsia in an insect pest. Microb Ecol 70:287–297. doi:  10.1007/s00248-015-0565-z
  12. Chen D-Q, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol Exp Appl 95:315–323. doi: 10.1023/A:1004083324807 CrossRefGoogle Scholar
  13. Chiel E, Inbar M, Mozes-Daube N, White JA, Hunter MS, Zchori-Fein E (2009) Assessments of fitness effects by the facultative symbiont Rickettsia in the sweetpotato whitefly (Hemiptera: Aleyrodidae). Ann Entomol Soc Am 102:413–418. doi: 10.1603/008.102.0309 CrossRefGoogle Scholar
  14. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19. doi: 10.1146/annurev-ento-112408-085504 PubMedCrossRefGoogle Scholar
  15. Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208. doi: 10.1603/AN09061
  16. Drost YC, van Lenteren JC, van Roermund HJW (1998) Life-history parameters of different biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to temperature and host plant: a selective review. Bull Entomol Res 88:219–229CrossRefGoogle Scholar
  17. Fan Y, Wernegreen JJ (2013) Can’t take the heat: high temperature depletes bacterial endosymbionts of ants. Microb Ecol 66:727–733. doi: 10.1007/s00248-013-0264-6 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ferrari J, Scarborough CL, Godfray HCJ (2007) Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids. Oecologia 153:323–329. doi: 10.1007/s00442-007-0730-2 PubMedCrossRefGoogle Scholar
  19. Fujii Y, Kageyama D, Hoshizaki S, Ishikawa H, Sasaki T (2001) Transfection of Wolbachia in Lepidoptera: the feminizer of the adzuki bean borer Ostrinia scapulalis causes male killing in the Mediterranean flour moth Ephestia kuehniella. Proc Biol Sci 268:855–859. doi: 10.1098/rspb.2001.1593 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652. doi: 10.1128/AEM.72.5.3646-3652.2006
  21. Guo JY, Cong L, Wan FH (2012) Multiple generation effects of high temperature on the development and fecundity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Insect Sci 20:541–549. doi: 10.1111/j.1744-7917.2012.01546.x PubMedCrossRefGoogle Scholar
  22. Hammer TJ, Bowers MD (2015) Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14. doi: 10.1007/s00442-015-3327-1
  23. Harris LR, Kelly SE, Hunter MS, Perlman SJ (2009) Population dynamics and rapid spread of Cardinium, a bacterial endosymbiont causing cytoplasmic incompatibility in Encarsia pergandiella (Hymenoptera: Aphelinidae). Heredity 104:239–246. doi: 10.1038/hdy.2009.130 PubMedCrossRefGoogle Scholar
  24. Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702. doi: 10.1126/science.1162418 PubMedCrossRefGoogle Scholar
  25. Henderson CF, Tilton EW (1955) Tests with acaricides against the brow wheat mite. J Econ Entomol 48:157–161CrossRefGoogle Scholar
  26. Hendry TA, Hunter MS, Baltrus DA (2014) The facultative symbiont Rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains. Appl Environ Microbiol 80:7161–7168. doi: 10.1128/AEM.02447-14 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256. doi: 10.1126/science.1199410 PubMedCrossRefGoogle Scholar
  28. Hussa EA, Goodrich-Blair H (2013) It takes a village: ecological and fitness impacts of multipartite mutualism. Annu Rev Microbiol 67:161–178. doi: 10.1146/annurev-micro-092412-155723 PubMedCrossRefGoogle Scholar
  29. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215. doi: 10.1126/science.1188235 PubMedCrossRefGoogle Scholar
  30. Jia FX, Yang MS, Yang WJ, Wang JJ (2009) Influence of continuous high temperature conditions on Wolbachia infection frequency and the fitness of Liposcelis tricolor (Psocoptera: Liposcelididae). Environ Entomol 38:1365–1372PubMedCrossRefGoogle Scholar
  31. Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474. doi: 10.1111/j.1461-0248.2010.01538.x CrossRefGoogle Scholar
  32. Kondo N, Shimada M, Fukatsu T (2005) Infection density of Wolbachia endosymbiont affected by co-infection and host genotype. Biol Lett 1:488–491PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792. doi: 10.1002/ps.1595 PubMedCrossRefGoogle Scholar
  34. Lukasik P, Guo H, van Asch M, Ferrari J, Godfray HC (2013) Protection against a fungal pathogen conferred by the aphid facultative endosymbionts Rickettsia and Spiroplasma is expressed in multiple host genotypes and species and is not influenced by co-infection with another symbiont. J Evol Biol 26:2654–2661. doi: 10.1111/jeb.12260 PubMedCrossRefGoogle Scholar
  35. Mahadav A, Kontsedalov S, Czosnek H, Ghanim M (2009) Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Insect Biochem Mol Biol 39:668–676. doi: 10.1016/j.ibmb.2009.08.002 PubMedCrossRefGoogle Scholar
  36. McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2001) Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc Biol Sci 268:2565–2570PubMedPubMedCentralCrossRefGoogle Scholar
  37. Montllor C, Maxmen A, Purcell A (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195CrossRefGoogle Scholar
  38. Morag N, Klement E, Saroya Y, Lensky I, Gottlieb Y (2012) Prevalence of the symbiont Cardinium in Culicoides (Diptera: Ceratopogonidae) vector species is associated with land surface temperature. FASEB J 26:4025–4034. doi: 10.1096/fj.12-21041 PubMedCrossRefGoogle Scholar
  39. Muniz M, Nombela G (2001) Differential variation in development of the B- and Q-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on sweet pepper at constant temperatures. Environ Entomol 30:720–727CrossRefGoogle Scholar
  40. Naranjo SE, Ellsworth PC (2009) Fifty years of the integrated control concept: moving the model and implementation forward in Arizona. Pest Manag Sci 65:1267–1286. doi: 10.1002/ps.1861 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Nava-Camberos U, Riley DG, Harris MK (2001) Temperature and host plant effects on development, survival and fecundity of Bemisia argentifolii (Homoptera: Aleyrodidae). Environ Entomol 30:55–63. doi: 10.1603/0046-225X-30.1.55 CrossRefGoogle Scholar
  42. Normark BB, Ross L (2014) Genetic conflict, kin and the origins of novel genetic systems. Philos Trans R Soc B 369:20130364. doi: 10.1098/rstb.2013.0364 CrossRefGoogle Scholar
  43. Oliveira MRV, Henneberry TJ, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot 20:709–723. doi: 10.1016/S0261-2194(01)00108-9 CrossRefGoogle Scholar
  44. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807. doi: 10.1073/pnas.0335320100 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA 102:12795–12800. doi: 10.1073/pnas.0506131102 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc Biol Sci 275:293–299PubMedPubMedCentralCrossRefGoogle Scholar
  47. Oliver KM, Smith AH, Russell JA (2014) Defensive symbiosis in the real world—advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 28:341–355. doi: 10.1111/1365-2435.12133 CrossRefGoogle Scholar
  48. Policastro PF, Munderloh UG, Fischer ER, Hackstadt T (1997) Rickettsia rickettsii growth and temperature-inducible protein expression in embryonic tick cell lines. J Med Microbiol 46:839–845PubMedCrossRefGoogle Scholar
  49. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  50. Rigaud T, Juchault P, Mocquard JP (1991) Experimental study of temperature effects on the sex ratio of broods in terrestrial crustacea Armadillidium vulgare Latr. Possible implications in natural populations. J Evol Biol 4:603–617. doi: 10.1046/j.1420-9101 CrossRefGoogle Scholar
  51. Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc B 273:603–610. doi: 10.1098/rspb.2005.3348 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Scarborough CL, Ferrari J, Godfray HC (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781. doi: 10.1126/science.1120180 PubMedCrossRefGoogle Scholar
  53. Shan HW, Lu YH, Bing XL, Liu SS, Liu YQ (2014) Differential responses of the whitefly Bemisia tabaci symbionts to unfavorable low and high temperatures. Microb Ecol 68:472–482. doi: 10.1007/s00248-014-0424-3 PubMedCrossRefGoogle Scholar
  54. Sloan DB, Moran NA (2012) Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol Lett 8:986–989. doi: 10.1098/rsbl.2012.0664 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:2753–2763. doi: 10.1371/journal.pbio.1000002 CrossRefGoogle Scholar
  56. Thompson JN (1997) Evaluating the dynamics of coevolution among geographically structured populations. Ecology 78:1619–1623CrossRefGoogle Scholar
  57. Wagner T (1995) Temperature-dependent development, mortality and adult size of sweetpotato whitefly biotype B (Homoptera: Aleyrodidae) on cotton. Environ Entomol 24:1179–1188CrossRefGoogle Scholar
  58. Wagner SM, Martinez AJ, Ruan YM, Kim KL, Lenhart PA, Dehnel AC, Oliver KM, White JA (2015) Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct Ecol. doi: 10.1111/1365-2435.12459 Google Scholar
  59. Wang K, Tsai JH (1996) Temperature effect on development and reproduction of silverleaf whitefly (Homoptera: Aleyrodidae). Ann Entomol Soc Am 89:375–384. doi: 10.1093/aesa/89.3.375 CrossRefGoogle Scholar
  60. Wernegreen JJ (2012) Mutualism meltdown in insects: bacteria constrain thermal adaptation. Curr Opin Microbiol 15:255–262. doi: 10.1016/j.mib.2012.02.001 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. doi: 10.1038/nrmicro1969 PubMedCrossRefGoogle Scholar
  62. Wiwatanaratanabutr I, Kittayapong P (2009) Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus. J Invertebr Pathol 102:220–224. doi: 10.1016/j.jip.2009.08.009 PubMedCrossRefGoogle Scholar
  63. Xi Z, Khoo CC, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–328. doi: 10.1126/science.1117607 PubMedCrossRefGoogle Scholar
  64. Xie J, Butler S, Sanchez G, Mateos M (2014) Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity 112:399–408. doi: 10.1038/hdy.2013.118 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Yang T-C, Chi H (2006) Life tables and development of Bemisia argentifolii (Homoptera: Aleyrodidae) at different temperatures. J Econ Entomol 99:691–698. doi: 10.1603/0022-0493-99.3.691 PubMedCrossRefGoogle Scholar
  66. Zchori-Fein E, Lahav T, Freilich S (2014) Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front Microbiol 5:310. doi: 10.3389/fmicb.2014.00310 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bodil N. Cass
    • 1
  • Anna G. Himler
    • 2
    • 3
  • Elizabeth C. Bondy
    • 2
  • Jacquelyn E. Bergen
    • 2
  • Sierra K. Fung
    • 2
  • Suzanne E. Kelly
    • 2
  • Martha S. Hunter
    • 2
    Email author
  1. 1.Graduate Interdisciplinary Program in Entomology and Insect ScienceUniversity of ArizonaTucsonUSA
  2. 2.Department of EntomologyUniversity of ArizonaTucsonUSA
  3. 3.Department of BiologyThe College of IdahoCaldwellUSA

Personalised recommendations